Origins of elasticity in molecular materials

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Amy J. Thompson, Bowie S. K. Chong, Elise P. Kenny, Jack D. Evans, Joshua A. Powell, Mark A. Spackman, John C. McMurtrie, Benjamin J. Powell, Jack K. Clegg
{"title":"Origins of elasticity in molecular materials","authors":"Amy J. Thompson, Bowie S. K. Chong, Elise P. Kenny, Jack D. Evans, Joshua A. Powell, Mark A. Spackman, John C. McMurtrie, Benjamin J. Powell, Jack K. Clegg","doi":"10.1038/s41563-025-02133-w","DOIUrl":null,"url":null,"abstract":"Elasticity is ubiquitous and produces a spontaneously reversible response to applied stress1. Despite the utility and importance of this property in regard to scientific and engineering applications, the atomic-scale location of the force that returns an object to its original shape remains elusive in molecular crystals. Here we use a series of density functional theory calculations to locate precisely where the energy is stored when single crystals of three molecular materials are placed under elastic stress. We show for each material that different intermolecular interactions are responsible for the restoring force under both expansive and compressive strain. These findings provide insight into the elastic behaviour of crystalline materials that is needed for more efficient design of flexible technologies and future smart devices. Elasticity is ubiquitous in everyday life, but the molecular origin of the restoring force remains elusive. Here the authors use a series of density functional theory calculations to understand how interaction energies change as a result of the bending of molecular crystals.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 3","pages":"356-360"},"PeriodicalIF":37.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-025-02133-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Elasticity is ubiquitous and produces a spontaneously reversible response to applied stress1. Despite the utility and importance of this property in regard to scientific and engineering applications, the atomic-scale location of the force that returns an object to its original shape remains elusive in molecular crystals. Here we use a series of density functional theory calculations to locate precisely where the energy is stored when single crystals of three molecular materials are placed under elastic stress. We show for each material that different intermolecular interactions are responsible for the restoring force under both expansive and compressive strain. These findings provide insight into the elastic behaviour of crystalline materials that is needed for more efficient design of flexible technologies and future smart devices. Elasticity is ubiquitous in everyday life, but the molecular origin of the restoring force remains elusive. Here the authors use a series of density functional theory calculations to understand how interaction energies change as a result of the bending of molecular crystals.

Abstract Image

Abstract Image

弹性在分子材料中的起源
弹性无处不在,对施加的应力产生自发可逆的反应。尽管这一特性在科学和工程应用方面具有实用性和重要性,但在分子晶体中,使物体恢复其原始形状的力的原子尺度位置仍然难以捉摸。在这里,我们使用一系列密度泛函理论计算来精确定位当三种分子材料的单晶处于弹性应力下时能量的储存位置。我们表明,对于每种材料,在膨胀应变和压缩应变下,不同的分子间相互作用负责恢复力。这些发现为更有效地设计柔性技术和未来智能设备所需的晶体材料的弹性行为提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信