{"title":"Structural dynamics of human fatty acid synthase in the condensing cycle","authors":"Wooyoung Choi, Chengmin Li, Yifei Chen, Yongqiang Wang, Yifan Cheng","doi":"10.1038/s41586-025-08782-w","DOIUrl":null,"url":null,"abstract":"<p>Long chain fatty acids are the building blocks of fat in human bodies. In mammals, fatty acid synthase (FASN) contains multiple enzymatic domains to catalyze all chemical reactions needed for <i>de novo</i> fatty acid synthesis<sup>1</sup>. While the chemical reactions carried out by these enzymatic domains are well defined, how the dimeric FASN with an open architecture continuously catalyzes such reactions to synthesize a complete fatty acid remains elusive. Here, using a strategy of tagging and purifying endogenous FASN in HEK293 for single particle cryogenic electron microscopy studies, we characterized the structural dynamics of endogenous human FASN. We captured the conformational snapshots of various functional substates in the condensing cycle and developed a procedure to analyze particle distribution landscape of FASN with different orientations between its condensing and modifying wings. Together, we reveal that FASN function does not require large rotational motion between its two major functional domains during the condensing cycle, and that the catalytic reactions in condensing cycle carried out by two monomers are unsynchronized. Our data thus provide a new composite view of FASN dynamics during the fatty acid synthesis condensing cycle.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"127 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08782-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long chain fatty acids are the building blocks of fat in human bodies. In mammals, fatty acid synthase (FASN) contains multiple enzymatic domains to catalyze all chemical reactions needed for de novo fatty acid synthesis1. While the chemical reactions carried out by these enzymatic domains are well defined, how the dimeric FASN with an open architecture continuously catalyzes such reactions to synthesize a complete fatty acid remains elusive. Here, using a strategy of tagging and purifying endogenous FASN in HEK293 for single particle cryogenic electron microscopy studies, we characterized the structural dynamics of endogenous human FASN. We captured the conformational snapshots of various functional substates in the condensing cycle and developed a procedure to analyze particle distribution landscape of FASN with different orientations between its condensing and modifying wings. Together, we reveal that FASN function does not require large rotational motion between its two major functional domains during the condensing cycle, and that the catalytic reactions in condensing cycle carried out by two monomers are unsynchronized. Our data thus provide a new composite view of FASN dynamics during the fatty acid synthesis condensing cycle.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.