Kaiwen Zhang, Anna P. Constantinou, Cathal O’Connell, Theoni K. Georgiou and Amy Gelmi
{"title":"A thermoresponsive PEG-based methacrylate triblock terpolymer as a bioink for 3D bioprinting†","authors":"Kaiwen Zhang, Anna P. Constantinou, Cathal O’Connell, Theoni K. Georgiou and Amy Gelmi","doi":"10.1039/D4TB02572E","DOIUrl":null,"url":null,"abstract":"<p >Thermoresponsive polymers have been extensively reported for their use in tissue engineering and drug delivery applications. They have a wide range of thermoresponsive and rheological properties controlled by their structural characteristics, such as composition and architecture. Here, the considerable potential of a PEG based, non-ionic triblock thermoresponsive copolymer, namely OEGMA300<small><sub>13</sub></small>-<em>b</em>-BuMA<small><sub>22</sub></small>-<em>b</em>-DEGMA<small><sub>12</sub></small> as a bioink for 3D printing with cell encapsulation is identified. The rheological tests showed that the gel transition temperature is 8 °C with 35% w/w concentration in PBS. The printability and cytotoxicity of the thermoresponsive gel were characterised and compared with those of commercial thermoresponsive polymer Pluronic®F127 in detail. Specifically, the 35% w/w triblock copolymer presented great printability with a printing speed of 450 mm min<small><sup>−1</sup></small> at 37 °C, and was less cytotoxic than F127 at both 20% and 30% w/w concentrations. A one-layer structure of human mesenchymal stem cell (hMSC) embedded triblock copolymer was successfully printed onto a glass slide at 37 °C. This provides an option to create a scaffold for stem cell culture and programming for further tissue engineering applications <em>via</em> direct printing of a cell-laden thermoresponsive polymer.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 11","pages":" 3593-3601"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d4tb02572e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02572e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoresponsive polymers have been extensively reported for their use in tissue engineering and drug delivery applications. They have a wide range of thermoresponsive and rheological properties controlled by their structural characteristics, such as composition and architecture. Here, the considerable potential of a PEG based, non-ionic triblock thermoresponsive copolymer, namely OEGMA30013-b-BuMA22-b-DEGMA12 as a bioink for 3D printing with cell encapsulation is identified. The rheological tests showed that the gel transition temperature is 8 °C with 35% w/w concentration in PBS. The printability and cytotoxicity of the thermoresponsive gel were characterised and compared with those of commercial thermoresponsive polymer Pluronic®F127 in detail. Specifically, the 35% w/w triblock copolymer presented great printability with a printing speed of 450 mm min−1 at 37 °C, and was less cytotoxic than F127 at both 20% and 30% w/w concentrations. A one-layer structure of human mesenchymal stem cell (hMSC) embedded triblock copolymer was successfully printed onto a glass slide at 37 °C. This provides an option to create a scaffold for stem cell culture and programming for further tissue engineering applications via direct printing of a cell-laden thermoresponsive polymer.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices