Enhancing breast cancer treatment: Evaluating the efficacy of hyaluronic acid-coated tamoxifen-loaded solid lipid nanoparticles on MCF7 cells.

Niloufar Ghayoumipour, Hossein Ghafouri
{"title":"Enhancing breast cancer treatment: Evaluating the efficacy of hyaluronic acid-coated tamoxifen-loaded solid lipid nanoparticles on MCF7 cells.","authors":"Niloufar Ghayoumipour, Hossein Ghafouri","doi":"10.1177/09603271251322531","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tamoxifen (TMX) shows promise in treating breast cancer, but it faces challenges such as poor solubility, instability, and incomplete release when targeting tumors. Additionally, TMX therapy's toxicity is a critical issue in breast cancer treatment. This study aimed to assess the impact of hyaluronic acid (HA)-coated TMX-loaded solid lipid nanoparticles (HA-TMX-SLNs) on MCF7 breast cancer cells.</p><p><strong>Methods: </strong>Solid lipid nanoparticles (SLNs) were prepared using hot homogenization. The HA-TMX-SLNs and TMX-SLNs were characterized and evaluated through transmission electron microscopy (TEM). Cytotoxicity was assessed using the MTT assay, and Western blot analysis was utilized to identify key factors in the cell cycle and apoptosis.</p><p><strong>Results: </strong>The nanoparticles (HA-TMX-SLNs) demonstrated approximately 55% loading efficiency after 100 h. HA-TMX-SLNs exhibited lower cytotoxicity in MCF7 cells compared to other treatments. Significant decreases in expression levels of cyclin-dependent kinase (CDK) 4, Cyclin D1, CDK2, and Bcl2 were observed after treatment with HA-TMX-SLNs, along with an increase in cleaved/procaspase-7.</p><p><strong>Discussion: </strong>The in vitro release study showed that HA-coated SLNs consistently released the drug into the media under controlled conditions. Furthermore, HA-TMX-SLNs exhibited cytotoxic effects, increasing apoptosis and inhibiting cancer cell proliferation. These findings suggest that HA-TMX-SLNs effectively deliver TMX to breast cancer cells.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251322531"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251322531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Tamoxifen (TMX) shows promise in treating breast cancer, but it faces challenges such as poor solubility, instability, and incomplete release when targeting tumors. Additionally, TMX therapy's toxicity is a critical issue in breast cancer treatment. This study aimed to assess the impact of hyaluronic acid (HA)-coated TMX-loaded solid lipid nanoparticles (HA-TMX-SLNs) on MCF7 breast cancer cells.

Methods: Solid lipid nanoparticles (SLNs) were prepared using hot homogenization. The HA-TMX-SLNs and TMX-SLNs were characterized and evaluated through transmission electron microscopy (TEM). Cytotoxicity was assessed using the MTT assay, and Western blot analysis was utilized to identify key factors in the cell cycle and apoptosis.

Results: The nanoparticles (HA-TMX-SLNs) demonstrated approximately 55% loading efficiency after 100 h. HA-TMX-SLNs exhibited lower cytotoxicity in MCF7 cells compared to other treatments. Significant decreases in expression levels of cyclin-dependent kinase (CDK) 4, Cyclin D1, CDK2, and Bcl2 were observed after treatment with HA-TMX-SLNs, along with an increase in cleaved/procaspase-7.

Discussion: The in vitro release study showed that HA-coated SLNs consistently released the drug into the media under controlled conditions. Furthermore, HA-TMX-SLNs exhibited cytotoxic effects, increasing apoptosis and inhibiting cancer cell proliferation. These findings suggest that HA-TMX-SLNs effectively deliver TMX to breast cancer cells.

增强乳腺癌治疗:评估透明质酸包被负载他莫昔芬的固体脂质纳米颗粒对MCF7细胞的疗效。
简介:他莫昔芬(TMX)在治疗乳腺癌方面显示出希望,但它在靶向肿瘤时面临溶解度差、不稳定和不完全释放等挑战。此外,TMX治疗的毒性是乳腺癌治疗中的一个关键问题。本研究旨在评估透明质酸(HA)包被tmx负载的固体脂质纳米颗粒(HA- tmx - slns)对MCF7乳腺癌细胞的影响。方法:采用热均质法制备固体脂质纳米颗粒(SLNs)。通过透射电镜(TEM)对ha - tmx - sln和tmx - sln进行了表征和评价。采用MTT法评估细胞毒性,采用Western blot分析确定细胞周期和凋亡的关键因素。结果:纳米粒子(HA-TMX-SLNs)在100小时后的负载效率约为55%。与其他处理相比,HA-TMX-SLNs对MCF7细胞的细胞毒性较低。ha - tmx - sln治疗后,细胞周期蛋白依赖性激酶(CDK) 4、Cyclin D1、CDK2和Bcl2的表达水平显著降低,cleaved/procaspase-7的表达水平升高。讨论:体外释放研究表明,在受控条件下,ha包被的sln持续将药物释放到介质中。ha - tmx - sln具有细胞毒作用,增加细胞凋亡,抑制癌细胞增殖。这些发现表明ha -TMX- sln有效地将TMX传递到乳腺癌细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信