Enhancing breast cancer treatment: Evaluating the efficacy of hyaluronic acid-coated tamoxifen-loaded solid lipid nanoparticles on MCF7 cells.

Niloufar Ghayoumipour, Hossein Ghafouri
{"title":"Enhancing breast cancer treatment: Evaluating the efficacy of hyaluronic acid-coated tamoxifen-loaded solid lipid nanoparticles on MCF7 cells.","authors":"Niloufar Ghayoumipour, Hossein Ghafouri","doi":"10.1177/09603271251322531","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tamoxifen (TMX) shows promise in treating breast cancer, but it faces challenges such as poor solubility, instability, and incomplete release when targeting tumors. Additionally, TMX therapy's toxicity is a critical issue in breast cancer treatment. This study aimed to assess the impact of hyaluronic acid (HA)-coated TMX-loaded solid lipid nanoparticles (HA-TMX-SLNs) on MCF7 breast cancer cells.</p><p><strong>Methods: </strong>Solid lipid nanoparticles (SLNs) were prepared using hot homogenization. The HA-TMX-SLNs and TMX-SLNs were characterized and evaluated through transmission electron microscopy (TEM). Cytotoxicity was assessed using the MTT assay, and Western blot analysis was utilized to identify key factors in the cell cycle and apoptosis.</p><p><strong>Results: </strong>The nanoparticles (HA-TMX-SLNs) demonstrated approximately 55% loading efficiency after 100 h. HA-TMX-SLNs exhibited lower cytotoxicity in MCF7 cells compared to other treatments. Significant decreases in expression levels of cyclin-dependent kinase (CDK) 4, Cyclin D1, CDK2, and Bcl2 were observed after treatment with HA-TMX-SLNs, along with an increase in cleaved/procaspase-7.</p><p><strong>Discussion: </strong>The in vitro release study showed that HA-coated SLNs consistently released the drug into the media under controlled conditions. Furthermore, HA-TMX-SLNs exhibited cytotoxic effects, increasing apoptosis and inhibiting cancer cell proliferation. These findings suggest that HA-TMX-SLNs effectively deliver TMX to breast cancer cells.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251322531"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251322531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Tamoxifen (TMX) shows promise in treating breast cancer, but it faces challenges such as poor solubility, instability, and incomplete release when targeting tumors. Additionally, TMX therapy's toxicity is a critical issue in breast cancer treatment. This study aimed to assess the impact of hyaluronic acid (HA)-coated TMX-loaded solid lipid nanoparticles (HA-TMX-SLNs) on MCF7 breast cancer cells.

Methods: Solid lipid nanoparticles (SLNs) were prepared using hot homogenization. The HA-TMX-SLNs and TMX-SLNs were characterized and evaluated through transmission electron microscopy (TEM). Cytotoxicity was assessed using the MTT assay, and Western blot analysis was utilized to identify key factors in the cell cycle and apoptosis.

Results: The nanoparticles (HA-TMX-SLNs) demonstrated approximately 55% loading efficiency after 100 h. HA-TMX-SLNs exhibited lower cytotoxicity in MCF7 cells compared to other treatments. Significant decreases in expression levels of cyclin-dependent kinase (CDK) 4, Cyclin D1, CDK2, and Bcl2 were observed after treatment with HA-TMX-SLNs, along with an increase in cleaved/procaspase-7.

Discussion: The in vitro release study showed that HA-coated SLNs consistently released the drug into the media under controlled conditions. Furthermore, HA-TMX-SLNs exhibited cytotoxic effects, increasing apoptosis and inhibiting cancer cell proliferation. These findings suggest that HA-TMX-SLNs effectively deliver TMX to breast cancer cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信