EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi
{"title":"EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression.","authors":"Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi","doi":"10.1007/s10548-024-01080-0","DOIUrl":null,"url":null,"abstract":"<p><p>By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"20"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01080-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.

基于长短期记忆网络和非线性区间2型模糊回归的视觉对象脑电信号分类。
通过深入了解大脑活动是如何被编码和解码的,我们增强了对大脑功能的理解。本文介绍了一种结合LSTM网络和非线性区间2型模糊回归(NIT2FR)的视觉对象相关脑电信号分类方法。本文利用ResNet对图像进行特征提取,利用LSTM网络对脑电信号进行特征提取,利用NIT2FR将图像特征映射到脑电信号特征。二类模糊逻辑的应用解决了脑电信号的非线性、噪声、有限的数据样本量以及参与者心理状态的多样性所带来的不确定性。斯坦福数据库用于实现,通过诸如分类准确性、精度、召回率和F1分数等指标评估有效性。结果表明,LSTM网络对原始EEG数据的分类准确率达到55.83%。与线性type-2、线性/非线性type-1模糊、神经网络和多项式回归等方法相比,NIT2FR结合SVM分类器的准确率为68.05%。因此,NIT2FR在处理高不确定性环境方面显示出优势。此外,与使用相同数据集的最佳先前研究相比,准确率提高了6.03%,这突显了其有效性。NIT2FR的准确率、召回率和F1评分结果分别为68.93%、68.08%和68.49%,优于线性2型、线性/非线性1型模糊回归方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信