Frank Winterroth, Jing Wang, Onno Wink, Bart Carelsen, Jeremy Dahl, Avnesh S Thakor
{"title":"A Theoretical Approach in Applying High-Frequency Acoustic and Elasticity Microscopy to Assess Cells and Tissues.","authors":"Frank Winterroth, Jing Wang, Onno Wink, Bart Carelsen, Jeremy Dahl, Avnesh S Thakor","doi":"10.1146/annurev-bioeng-112823-103134","DOIUrl":null,"url":null,"abstract":"<p><p>Medical ultrasound is a diagnostic imaging modality used for visualizing internal organs; the frequencies typically used are 2-10 MHz. Scanning acoustic microscopy (SAM) is a form of ultrasound where frequencies typically exceed 50 MHz. Increasing the acoustic frequency increases the specimen's spatial resolution but reduces the imaging depth. The advantages of using SAM over conventional light and electron microscopy include the ability to image cells and tissues without any preparation that could kill or alter them, providing a more accurate representation of the specimen. After scanning the specimen, acoustic signals are merged into an image on the basis of changes in the impedance mismatch between the immersion fluid and the specimens. The acoustic parameters determining the image quality are absorption and scattering. Surface scans can assess surface characteristics of the specimen. SAM is also capable of elastography, that is, studying elastic properties to discern differences between healthy and affected tissues. SAM has significant potential for detection/analysis in research and clinical studies.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-112823-103134","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Medical ultrasound is a diagnostic imaging modality used for visualizing internal organs; the frequencies typically used are 2-10 MHz. Scanning acoustic microscopy (SAM) is a form of ultrasound where frequencies typically exceed 50 MHz. Increasing the acoustic frequency increases the specimen's spatial resolution but reduces the imaging depth. The advantages of using SAM over conventional light and electron microscopy include the ability to image cells and tissues without any preparation that could kill or alter them, providing a more accurate representation of the specimen. After scanning the specimen, acoustic signals are merged into an image on the basis of changes in the impedance mismatch between the immersion fluid and the specimens. The acoustic parameters determining the image quality are absorption and scattering. Surface scans can assess surface characteristics of the specimen. SAM is also capable of elastography, that is, studying elastic properties to discern differences between healthy and affected tissues. SAM has significant potential for detection/analysis in research and clinical studies.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.