{"title":"Advancement of post-market surveillance of medical devices leveraging artificial intelligence: ECG devices case study.","authors":"Madžida Hundur, Lemana Spahić, Faruk Bećirović, Lejla Gurbeta Pokvić, Almir Badnjević","doi":"10.1177/09287329241303727","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>After 25 years of implementing the Medical Devices Directive (MDD), in 2017, the new Medical Devices Regulation (MDR) came into force, establishing stricter requirements for post-market surveillance of the safety and performance of medical devices (MD). For electrocardiogram (ECG) devices, which are crucial for monitoring cardiac activities, these requirements are essential to ensure the reliability and accuracy of diagnosing cardiac conditions and timely treatment.</p><p><strong>Objective: </strong>This study aims to enhance post-market surveillance of ECG devices by leveraging Machine Learning (ML) algorithms to predict the operational status of these devices. Specifically, the research focuses on classifying the success or failure of ECG device operations based on performance and safety parameters. The ultimate goal is to improve the management strategies of ECG devices in healthcare institutions, ensuring optimal functionality and increasing the reliability of diagnostic procedures.</p><p><strong>Method: </strong>During the inspection process of ECG devices conducted by an accredited laboratory in accordance with ISO 17020 standard in numerous healthcare institutions in Bosnia and Herzegovina, a total of 5577 samples were collected. Various machine learning algorithms, including Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM), were employed for result comparison and selection of the most accurate algorithm.</p><p><strong>Results: </strong>All algorithms demonstrated good performance, but the Random Forest (RF) algorithm stood out, achieving 100% accuracy in predicting the success/unsuccess status of the device. While the results of this research are specific to the collected data from EKG devices, the developed algorithms can be applied to other similar datasets, offering opportunities for broader use in the medical environment.</p><p><strong>Conclusion: </strong>Implementing machine learning algorithms for automated systems in healthcare institutions can significantly enhance the quality of patient diagnosis and treatment. Additionally, these systems can optimize costs associated with managing medical devices. Improved post-market surveillance using ML can address challenges related to ensuring device reliability and safety.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329241303727"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241303727","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: After 25 years of implementing the Medical Devices Directive (MDD), in 2017, the new Medical Devices Regulation (MDR) came into force, establishing stricter requirements for post-market surveillance of the safety and performance of medical devices (MD). For electrocardiogram (ECG) devices, which are crucial for monitoring cardiac activities, these requirements are essential to ensure the reliability and accuracy of diagnosing cardiac conditions and timely treatment.
Objective: This study aims to enhance post-market surveillance of ECG devices by leveraging Machine Learning (ML) algorithms to predict the operational status of these devices. Specifically, the research focuses on classifying the success or failure of ECG device operations based on performance and safety parameters. The ultimate goal is to improve the management strategies of ECG devices in healthcare institutions, ensuring optimal functionality and increasing the reliability of diagnostic procedures.
Method: During the inspection process of ECG devices conducted by an accredited laboratory in accordance with ISO 17020 standard in numerous healthcare institutions in Bosnia and Herzegovina, a total of 5577 samples were collected. Various machine learning algorithms, including Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM), were employed for result comparison and selection of the most accurate algorithm.
Results: All algorithms demonstrated good performance, but the Random Forest (RF) algorithm stood out, achieving 100% accuracy in predicting the success/unsuccess status of the device. While the results of this research are specific to the collected data from EKG devices, the developed algorithms can be applied to other similar datasets, offering opportunities for broader use in the medical environment.
Conclusion: Implementing machine learning algorithms for automated systems in healthcare institutions can significantly enhance the quality of patient diagnosis and treatment. Additionally, these systems can optimize costs associated with managing medical devices. Improved post-market surveillance using ML can address challenges related to ensuring device reliability and safety.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).