Lemana Spahić, Luka Jeremić, Ivana Lalatović, Tatjana Muratović, Amra Džuho, Lejla Gurbeta Pokvić, Almir Badnjević
{"title":"Machine learning for improved medical device management: A focus on defibrillator performance.","authors":"Lemana Spahić, Luka Jeremić, Ivana Lalatović, Tatjana Muratović, Amra Džuho, Lejla Gurbeta Pokvić, Almir Badnjević","doi":"10.1177/09287329241290944","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundPoorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. After the MD directive (MDD) had been in force for 25 years, in 2017 the new MD Regulation (MDR) was introduced. One of the more stringent requirement is a need for better control of MD safety and performance post-market surveillance mechanisms.ObjectiveTo address this, we have developed an automated system for management of MDs, based on their safety and performance measurement parameters, that use machine learning algorithm as a core of its functioning.MethodsIn total, 1997 samples were collected during the inspection process of defibrillator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. This paper presents solution developed for defibrillators, but proposed system is scalable to any other type of MDs, both diagnostic and therapeutic.ResultsVarious machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR). In addition, random forest regressor and XG Boost algorithms were tested for their predictive capabilities in the field of defibrillator output error prediction. These algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The highest accuracy achieved on this dataset was 94.8% using the Naive Bayes algorithm. The XGBoost Regressor with its r<sup>2</sup> of 0.99 emerged as a powerful tool, showcasing exceptional predictive accuracy and the ability to capture a substantial portion of the dataset's variability.ConclusionThe results of this study demonstrate that clinical engineering (CE) and health technology management (HTM) departments in healthcare institutions can benefit from proposed automatization of defibrillator maintenance scheduling in terms of increased safety and treatment of patients, on one side, and cost optimization in MD management departments, on the other side.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"737-743"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241290944","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundPoorly regulated and insufficiently maintained medical devices (MDs) carry high risk on safety and performance parameters impacting the clinical effectiveness and efficiency of patient diagnosis and treatment. After the MD directive (MDD) had been in force for 25 years, in 2017 the new MD Regulation (MDR) was introduced. One of the more stringent requirement is a need for better control of MD safety and performance post-market surveillance mechanisms.ObjectiveTo address this, we have developed an automated system for management of MDs, based on their safety and performance measurement parameters, that use machine learning algorithm as a core of its functioning.MethodsIn total, 1997 samples were collected during the inspection process of defibrillator inspections performed by an ISO 17020 accredited laboratory at various healthcare institutions in Bosnia and Herzegovina. This paper presents solution developed for defibrillators, but proposed system is scalable to any other type of MDs, both diagnostic and therapeutic.ResultsVarious machine learning algorithms were considered, including Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB) and Logistic Regression (LR). In addition, random forest regressor and XG Boost algorithms were tested for their predictive capabilities in the field of defibrillator output error prediction. These algorithms were selected because of their ability to handle large datasets and their potential for achieving high prediction accuracy. The highest accuracy achieved on this dataset was 94.8% using the Naive Bayes algorithm. The XGBoost Regressor with its r2 of 0.99 emerged as a powerful tool, showcasing exceptional predictive accuracy and the ability to capture a substantial portion of the dataset's variability.ConclusionThe results of this study demonstrate that clinical engineering (CE) and health technology management (HTM) departments in healthcare institutions can benefit from proposed automatization of defibrillator maintenance scheduling in terms of increased safety and treatment of patients, on one side, and cost optimization in MD management departments, on the other side.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).