Individual DOI minting for Open Repository: a script for creating a DOI on demand for a DSpace repository.

IF 2.9 4区 医学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Tess Grynoch, Lisa A Palmer
{"title":"Individual DOI minting for Open Repository: a script for creating a DOI on demand for a DSpace repository.","authors":"Tess Grynoch, Lisa A Palmer","doi":"10.5195/jmla.2025.2076","DOIUrl":null,"url":null,"abstract":"<p><p>Digital Object Identifiers (DOIs) are a key persistent identifier in the publishing landscape to ensure the discoverability and citation of research products. Minting DOIs can be a time-consuming task for repository librarians. This process can be automated since the metadata for DOIs is already in the repository record and DataCite, a DOI minting organization, and Open Repository, a DSpace repository platform, both have application programming interfaces (APIs). Existing software enables bulk DOI minting. However, the institutional repository at UMass Chan Medical School contains a mixture of original materials that need DOIs (dissertations, reports, data, etc.) and previously published materials that already have DOIs such as journal articles. An institutional repository librarian and her librarian colleague with Python experience embarked on a paired programming project to create a script to mint DOIs on demand in DataCite for individual items in the institution's Open Repository instance. The pair met for one hour each week to develop and test the script using combined skills in institutional repositories, metadata, DOI minting, coding in Python, APIs, and data cleaning. The project was a great learning opportunity for both librarians to improve their Python coding skills. The new script makes the DOI minting process more efficient, enhances metadata in DataCite, and improves accuracy. Future script enhancements such as automatically updating repository metadata with the new DOI are planned after the repository upgrade to DSpace 7.</p>","PeriodicalId":47690,"journal":{"name":"Journal of the Medical Library Association","volume":"113 1","pages":"86-87"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Medical Library Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5195/jmla.2025.2076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Object Identifiers (DOIs) are a key persistent identifier in the publishing landscape to ensure the discoverability and citation of research products. Minting DOIs can be a time-consuming task for repository librarians. This process can be automated since the metadata for DOIs is already in the repository record and DataCite, a DOI minting organization, and Open Repository, a DSpace repository platform, both have application programming interfaces (APIs). Existing software enables bulk DOI minting. However, the institutional repository at UMass Chan Medical School contains a mixture of original materials that need DOIs (dissertations, reports, data, etc.) and previously published materials that already have DOIs such as journal articles. An institutional repository librarian and her librarian colleague with Python experience embarked on a paired programming project to create a script to mint DOIs on demand in DataCite for individual items in the institution's Open Repository instance. The pair met for one hour each week to develop and test the script using combined skills in institutional repositories, metadata, DOI minting, coding in Python, APIs, and data cleaning. The project was a great learning opportunity for both librarians to improve their Python coding skills. The new script makes the DOI minting process more efficient, enhances metadata in DataCite, and improves accuracy. Future script enhancements such as automatically updating repository metadata with the new DOI are planned after the repository upgrade to DSpace 7.

开放存储库的独立DOI生成:用于根据需要为DSpace存储库创建DOI的脚本。
数字对象标识符(doi)是出版领域中确保研究产品可发现性和被引用的关键持久标识符。对于存储库管理员来说,创建doi可能是一项耗时的任务。这个过程可以自动化,因为DOI的元数据已经在存储库记录中,而且DataCite(一个DOI生成组织)和Open repository(一个DSpace存储库平台)都有应用程序编程接口(api)。现有软件支持批量DOI铸造。然而,麻省大学陈医学院的机构知识库包含了需要doi的原始材料(论文、报告、数据等)和已经具有doi的先前发表的材料,如期刊文章。一个机构存储库管理员和她有Python经验的同事开始了一个配对编程项目,创建一个脚本,在DataCite中为机构的Open repository实例中的单个项目按需生成doi。两人每周会面一小时,使用机构存储库、元数据、DOI挖掘、Python编码、api和数据清理等综合技能开发和测试脚本。对于两位图书管理员来说,这个项目是一个很好的学习机会,可以提高他们的Python编码技能。新的脚本使DOI生成过程更加高效,增强了DataCite中的元数据,并提高了准确性。未来的脚本增强功能,如使用新的DOI自动更新存储库元数据,计划在存储库升级到DSpace 7之后进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Medical Library Association
Journal of the Medical Library Association INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.10
自引率
10.00%
发文量
39
审稿时长
26 weeks
期刊介绍: The Journal of the Medical Library Association (JMLA) is an international, peer-reviewed journal published quarterly that aims to advance the practice and research knowledgebase of health sciences librarianship. The most current impact factor for the JMLA (from the 2007 edition of Journal Citation Reports) is 1.392.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信