Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice.

IF 5.8 2区 医学 Q1 Medicine
Jiwei Zhu, Jinglin Wu, Manlu Lu, Qianqian Jiao, Xiaojing Liu, Lu Liu, Mingzhen Li, Bin Zhang, Junhong Yan, Yan Yu, Lei Pan
{"title":"Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice.","authors":"Jiwei Zhu, Jinglin Wu, Manlu Lu, Qianqian Jiao, Xiaojing Liu, Lu Liu, Mingzhen Li, Bin Zhang, Junhong Yan, Yan Yu, Lei Pan","doi":"10.1186/s12931-025-03143-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The intricacies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing acute lung injury (ALI) and modulating inflammatory factor dynamics in vivo remain poorly elucidated. The present study endeavors to explore the impact of the recombinant SARS-CoV-2 spike protein S1 subunit (S1SP) on ALI and inflammatory factor profiles in mice, aiming to uncover potential therapeutic targets and intervention strategies for the prevention and management of Coronavirus Disease 2019 (COVID-19).</p><p><strong>Methods: </strong>To mimic COVID-19 infection, K18-hACE2 transgenic mice were intratracheally instilled with S1SP, while C57BL/6 mice were administered LPS to form a positive control group. This setup facilitated the examination of lung injury severity, inflammatory factor levels, and alterations in signaling pathways in mice mimicking COVID-19 infection. Histopathological assessment through HE staining, along with analysis of lung wet/dry ratio and ultrasound imaging, revealed severe lung injury.</p><p><strong>Results: </strong>After molding, K18-hACE2 mice exhibited a pronounced reduction in body weight and showed more significant lung injury (P < 0.05). Notably, there was a significant elevation in vascular permeability, total protein, and total white blood cells in bronchoalveolar lavage fluid (BALF) (P < 0.05), indicative of tissue damage. Additionally, the tight junction of lung tissue was compromised (P < 0.05), accompanied by intense oxidative stress marked by decreased SOD activity and elevated MDA content (P < 0.05). Cytokine levels, including IL-6, IL-1β, TNF-α, and MIG, were significantly upregulated in both BALF and serum of S1SP + K18 mice (P < 0.05). Furthermore, S1SP prominently augmented the expression of p-p65/P65 and attenuated IκBα expression in the NF-κB signaling pathway of humanized mice (P < 0.05), corroborating a heightened inflammatory response at the tissue level (P < 0.05).</p><p><strong>Conclusion: </strong>The administration of S1SP to K18-hACE2 mice resulted in severe lung injury, enhanced vascular permeability, and compromised epithelial barrier function in vivo. This was accompanied by disruption of lung tight junctions, the manifestation of severe oxidative stress and a cytokine storm, as well as the activation of the NF-κB signaling pathway, highlighting key pathological processes underlying COVID-19-induced lung injury.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"59"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03143-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The intricacies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing acute lung injury (ALI) and modulating inflammatory factor dynamics in vivo remain poorly elucidated. The present study endeavors to explore the impact of the recombinant SARS-CoV-2 spike protein S1 subunit (S1SP) on ALI and inflammatory factor profiles in mice, aiming to uncover potential therapeutic targets and intervention strategies for the prevention and management of Coronavirus Disease 2019 (COVID-19).

Methods: To mimic COVID-19 infection, K18-hACE2 transgenic mice were intratracheally instilled with S1SP, while C57BL/6 mice were administered LPS to form a positive control group. This setup facilitated the examination of lung injury severity, inflammatory factor levels, and alterations in signaling pathways in mice mimicking COVID-19 infection. Histopathological assessment through HE staining, along with analysis of lung wet/dry ratio and ultrasound imaging, revealed severe lung injury.

Results: After molding, K18-hACE2 mice exhibited a pronounced reduction in body weight and showed more significant lung injury (P < 0.05). Notably, there was a significant elevation in vascular permeability, total protein, and total white blood cells in bronchoalveolar lavage fluid (BALF) (P < 0.05), indicative of tissue damage. Additionally, the tight junction of lung tissue was compromised (P < 0.05), accompanied by intense oxidative stress marked by decreased SOD activity and elevated MDA content (P < 0.05). Cytokine levels, including IL-6, IL-1β, TNF-α, and MIG, were significantly upregulated in both BALF and serum of S1SP + K18 mice (P < 0.05). Furthermore, S1SP prominently augmented the expression of p-p65/P65 and attenuated IκBα expression in the NF-κB signaling pathway of humanized mice (P < 0.05), corroborating a heightened inflammatory response at the tissue level (P < 0.05).

Conclusion: The administration of S1SP to K18-hACE2 mice resulted in severe lung injury, enhanced vascular permeability, and compromised epithelial barrier function in vivo. This was accompanied by disruption of lung tight junctions, the manifestation of severe oxidative stress and a cytokine storm, as well as the activation of the NF-κB signaling pathway, highlighting key pathological processes underlying COVID-19-induced lung injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信