Kim Hébert-Losier, Ma Roxanne Fernandez, Josie Athens, Masayoshi Kubo, Seth O'Neill
{"title":"A Randomized Crossover Trial on the Effects of Cadence on Calf Raise Test Outcomes: Cadence Does Matter.","authors":"Kim Hébert-Losier, Ma Roxanne Fernandez, Josie Athens, Masayoshi Kubo, Seth O'Neill","doi":"10.1123/jab.2024-0104","DOIUrl":null,"url":null,"abstract":"<p><p>The calf raise test (CRT) is commonly used to assess triceps surae muscle-tendon unit function. Often, a metronome set to 60 beats/min (30 repetitions/min) is used to set the cadence of calf raise repetitions, but studies report using cadences ranging from 30 to 120 beats/min. We investigated the effect of cadence on CRT outcomes, accounting for the potential confounders of sex, age, body mass index, and physical activity. Thirty-six healthy individuals (50% female) performed single-leg calf raise repetitions to volitional exhaustion in 3 randomized cadence conditions, 7 days apart: 30, 60, and 120 beats/min. Repetitions, total vertical displacement, total work, peak height, and peak power were recorded using the validated Calf Raise application. Cadence significantly affected all CRT outcomes (P ≤ .008), except repetitions (P = .200). Post hoc analysis revealed 60 beats/min resulted in significantly greater total vertical displacement and work than 30 and 120 beats/min. Peak height was greater at 60 and 120 than 30 beats/min, and peak power was greater at 120 beats/min. Males generated greater work and peak power (P ≤ .001), whereas individuals with greater body mass index completed less repetitions (P = .008), achieved lower total vertical displacements (P = .003), and generated greater peak power (P = .005). CRT cadence is important to consider when interpreting CRT outcomes and comparing data between studies.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The calf raise test (CRT) is commonly used to assess triceps surae muscle-tendon unit function. Often, a metronome set to 60 beats/min (30 repetitions/min) is used to set the cadence of calf raise repetitions, but studies report using cadences ranging from 30 to 120 beats/min. We investigated the effect of cadence on CRT outcomes, accounting for the potential confounders of sex, age, body mass index, and physical activity. Thirty-six healthy individuals (50% female) performed single-leg calf raise repetitions to volitional exhaustion in 3 randomized cadence conditions, 7 days apart: 30, 60, and 120 beats/min. Repetitions, total vertical displacement, total work, peak height, and peak power were recorded using the validated Calf Raise application. Cadence significantly affected all CRT outcomes (P ≤ .008), except repetitions (P = .200). Post hoc analysis revealed 60 beats/min resulted in significantly greater total vertical displacement and work than 30 and 120 beats/min. Peak height was greater at 60 and 120 than 30 beats/min, and peak power was greater at 120 beats/min. Males generated greater work and peak power (P ≤ .001), whereas individuals with greater body mass index completed less repetitions (P = .008), achieved lower total vertical displacements (P = .003), and generated greater peak power (P = .005). CRT cadence is important to consider when interpreting CRT outcomes and comparing data between studies.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.