Biomechanical Evaluation of the Effect of MIS and COS Surgical Techniques on Patients with Spondylolisthesis using a Musculoskeletal Model.

Q3 Medicine
Sajad Azizi, Mohammad Nikkhoo, Mostafa Rostami, Chih-Hsiu Cheng
{"title":"Biomechanical Evaluation of the Effect of MIS and COS Surgical Techniques on Patients with Spondylolisthesis using a Musculoskeletal Model.","authors":"Sajad Azizi, Mohammad Nikkhoo, Mostafa Rostami, Chih-Hsiu Cheng","doi":"10.31661/jbpe.v0i0.2406-1781","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The biomechanical impacts of Conventional Open Surgery (COS) versus Minimally Invasive Surgery (MIS) fusion techniques on adjacent segments and their potential role in developing Adjacent Segment Disease (ASD) remain uncertain for spondylolisthesis.</p><p><strong>Objective: </strong>This study aimed to investigate the impact of MIS and COS fusion surgeries on adjacent spinal segments for spondylolisthesis, through on muscle injury and developing ASD.</p><p><strong>Material and methods: </strong>This prospective and non-randomized controls study used a validated musculoskeletal model to compare the biomechanical effects of COS and MIS L<sub>4</sub>/L<sub>5</sub> fusion surgery on patients with spondylolisthesis. The model incorporated kinematic data from 30 patients who underwent each surgery. A sitting task was simulated to model post-operative muscle atrophy, and the analysis focused on changes in biomechanics of adjacent spinal segments.</p><p><strong>Results: </strong>Lumbar flexion was significantly greater (201%) in MIS vs. COS, despite similar pelvic tilt. Consequently, Lumbopelvic Rhythm (LPR) also increased in MIS (133%). Both techniques altered inter-segmental moments. While inter-joint load was higher in COS, only the lower joint's compressive load was significantly greater (67%). Additionally, MIS required lower overall muscle force with reduced loads and passive moment on spinal joints compared to COS.</p><p><strong>Conclusion: </strong>This study demonstrates that MIS fusion preserves physiological LPR better than COS. MIS maintains normal spinal curvature and maintains lumbar lordosis. While open surgery can lead to abnormal curvature and increased muscle forces to compensate for spinal stability. The study emphasizes the importance of paraspinal muscles in influencing spinal load distribution during MIS compare to COS.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"15 1","pages":"49-66"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2406-1781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The biomechanical impacts of Conventional Open Surgery (COS) versus Minimally Invasive Surgery (MIS) fusion techniques on adjacent segments and their potential role in developing Adjacent Segment Disease (ASD) remain uncertain for spondylolisthesis.

Objective: This study aimed to investigate the impact of MIS and COS fusion surgeries on adjacent spinal segments for spondylolisthesis, through on muscle injury and developing ASD.

Material and methods: This prospective and non-randomized controls study used a validated musculoskeletal model to compare the biomechanical effects of COS and MIS L4/L5 fusion surgery on patients with spondylolisthesis. The model incorporated kinematic data from 30 patients who underwent each surgery. A sitting task was simulated to model post-operative muscle atrophy, and the analysis focused on changes in biomechanics of adjacent spinal segments.

Results: Lumbar flexion was significantly greater (201%) in MIS vs. COS, despite similar pelvic tilt. Consequently, Lumbopelvic Rhythm (LPR) also increased in MIS (133%). Both techniques altered inter-segmental moments. While inter-joint load was higher in COS, only the lower joint's compressive load was significantly greater (67%). Additionally, MIS required lower overall muscle force with reduced loads and passive moment on spinal joints compared to COS.

Conclusion: This study demonstrates that MIS fusion preserves physiological LPR better than COS. MIS maintains normal spinal curvature and maintains lumbar lordosis. While open surgery can lead to abnormal curvature and increased muscle forces to compensate for spinal stability. The study emphasizes the importance of paraspinal muscles in influencing spinal load distribution during MIS compare to COS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Physics and Engineering
Journal of Biomedical Physics and Engineering Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.90
自引率
0.00%
发文量
64
审稿时长
10 weeks
期刊介绍: The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信