[Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair].

Q3 Medicine
Xianhao Sheng, Wen Zhang, Shoulong Song, Fei Zhang, Baoxiang Zhang, Xiaoying Tian, Wentao Xiong, Yingguang Zhu, Yuxin Xie, Zi'ang Li, Lili Tan, Qiang Zhang, Yan Wang
{"title":"[Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair].","authors":"Xianhao Sheng, Wen Zhang, Shoulong Song, Fei Zhang, Baoxiang Zhang, Xiaoying Tian, Wentao Xiong, Yingguang Zhu, Yuxin Xie, Zi'ang Li, Lili Tan, Qiang Zhang, Yan Wang","doi":"10.7507/1002-1892.202410010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.</p><p><strong>Methods: </strong>Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.</p><p><strong>Results: </strong>Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.</p><p><strong>Conclusion: </strong>Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.</p>","PeriodicalId":23979,"journal":{"name":"中国修复重建外科杂志","volume":"39 2","pages":"174-186"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国修复重建外科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7507/1002-1892.202410010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.

Methods: Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.

Results: Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.

Conclusion: Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
中国修复重建外科杂志
中国修复重建外科杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
11334
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信