Dnyaneshwar Raut, Sharad Gadakh, Nandkumar Kute, A Blesseena, N V P R Gangarao, Kadambot H M Siddique, Jagadish Rane
{"title":"Identifying chickpea (Cicer arietinum L.) genotypes rich in ascorbic acid as a source of drought tolerance.","authors":"Dnyaneshwar Raut, Sharad Gadakh, Nandkumar Kute, A Blesseena, N V P R Gangarao, Kadambot H M Siddique, Jagadish Rane","doi":"10.1038/s41598-024-76394-x","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress induces a range of physiological changes in plants, including oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is a vital non-enzymatic antioxidant capable of scavenging reactive oxygen species and modulating key physiological processes in crops under abiotic stresses like drought. Chickpea (Cicer arietinum L.), predominantly cultivated in drought-prone regions, offers an ideal model for studying drought tolerance. We explored the potential of AsA phenotyping to enhance drought tolerance in chickpea. Using an automated phenomics facility to monitor daily soil moisture levels, we developed a protocol to screen chickpea genotypes for endogenous AsA content. The results showed that AsA accumulation peaked at 30% field capacity (FC)-when measured between 11:30 am and 12:00 noon-coinciding with the maximum solar radiation (32 °C). Using this protocol, we screened 104 diverse chickpea genotypes and two control varieties for genetic variability in AsA accumulation under soil moisture depletion, identifying two groups of genotypes with differing AsA levels. Field trials over two consecutive years revealed that genotypes with higher AsA content, such as BDNG-2018-15 and PG-1201-20, exhibited enhanced drought tolerance and minimal reductions in yield compared to standard cultivars. These AsA-rich genotypes hold promise as valuable genetic resources for breeding programs aimed at improving drought tolerance in chickpea.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6019"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76394-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress induces a range of physiological changes in plants, including oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is a vital non-enzymatic antioxidant capable of scavenging reactive oxygen species and modulating key physiological processes in crops under abiotic stresses like drought. Chickpea (Cicer arietinum L.), predominantly cultivated in drought-prone regions, offers an ideal model for studying drought tolerance. We explored the potential of AsA phenotyping to enhance drought tolerance in chickpea. Using an automated phenomics facility to monitor daily soil moisture levels, we developed a protocol to screen chickpea genotypes for endogenous AsA content. The results showed that AsA accumulation peaked at 30% field capacity (FC)-when measured between 11:30 am and 12:00 noon-coinciding with the maximum solar radiation (32 °C). Using this protocol, we screened 104 diverse chickpea genotypes and two control varieties for genetic variability in AsA accumulation under soil moisture depletion, identifying two groups of genotypes with differing AsA levels. Field trials over two consecutive years revealed that genotypes with higher AsA content, such as BDNG-2018-15 and PG-1201-20, exhibited enhanced drought tolerance and minimal reductions in yield compared to standard cultivars. These AsA-rich genotypes hold promise as valuable genetic resources for breeding programs aimed at improving drought tolerance in chickpea.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.