Metal-to-metal charge transfer for stabilizing high-voltage redox in lithium-rich layered oxide cathodes.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-02-21 Epub Date: 2025-02-19 DOI:10.1126/sciadv.adt0232
Min-Ho Kim, Haeseong Jang, Eunryeol Lee, Jeongwoo Seo, Jaehyun Park, Ahreum Choi, Taewon Kim, Myeongjun Choi, Euna Kim, Yeong Hwa Jung, Seok Ju Kang, Jaephil Cho, Yuzhang Li, Min Gyu Kim, Dong-Hwa Seo, Hyun-Wook Lee
{"title":"Metal-to-metal charge transfer for stabilizing high-voltage redox in lithium-rich layered oxide cathodes.","authors":"Min-Ho Kim, Haeseong Jang, Eunryeol Lee, Jeongwoo Seo, Jaehyun Park, Ahreum Choi, Taewon Kim, Myeongjun Choi, Euna Kim, Yeong Hwa Jung, Seok Ju Kang, Jaephil Cho, Yuzhang Li, Min Gyu Kim, Dong-Hwa Seo, Hyun-Wook Lee","doi":"10.1126/sciadv.adt0232","DOIUrl":null,"url":null,"abstract":"<p><p>Apart from conventional redox chemistries, exploring high-voltage anionic redox processes, such as pure oxygen or high-valent transition metal ion redox, poses challenges due to the instability of O nonbonding or O-dominant energy states. These states are associated with destructive behaviors in layered oxide cathodes, including local structural distortion, cationic disordering, and oxygen gas evolution. In this study, we suppress first-cycle voltage hysteresis and irreversible O<sub>2</sub> evolution in Li-rich oxide cathodes through covalency competition induced by the substitution of electropositive groups. We found that the nonequivalent electron distribution within an asymmetric M<sub>A</sub>-O-M<sub>B</sub> backbone (metal-to-metal charge transfer via oxygen ligands) increases electron density on electronegative transition metal ions, preventing them from reaching unstable oxidation states within an operating voltage range. This phenomenon is observed across diverse transition metal combinations, providing insights into controlling unnecessary oxygen redox activity. Our findings open new avenues for controlling intrinsic redox chemistry and enabling the rational design of high-energy density Li-rich oxide cathodes.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":"eadt0232"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt0232","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Apart from conventional redox chemistries, exploring high-voltage anionic redox processes, such as pure oxygen or high-valent transition metal ion redox, poses challenges due to the instability of O nonbonding or O-dominant energy states. These states are associated with destructive behaviors in layered oxide cathodes, including local structural distortion, cationic disordering, and oxygen gas evolution. In this study, we suppress first-cycle voltage hysteresis and irreversible O2 evolution in Li-rich oxide cathodes through covalency competition induced by the substitution of electropositive groups. We found that the nonequivalent electron distribution within an asymmetric MA-O-MB backbone (metal-to-metal charge transfer via oxygen ligands) increases electron density on electronegative transition metal ions, preventing them from reaching unstable oxidation states within an operating voltage range. This phenomenon is observed across diverse transition metal combinations, providing insights into controlling unnecessary oxygen redox activity. Our findings open new avenues for controlling intrinsic redox chemistry and enabling the rational design of high-energy density Li-rich oxide cathodes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信