Craig R Walton, Jihua Hao, Maria Schönbächler, Oliver Shorttle
{"title":"Large closed-basin lakes sustainably supplied phosphate during the origins of life.","authors":"Craig R Walton, Jihua Hao, Maria Schönbächler, Oliver Shorttle","doi":"10.1126/sciadv.adq0027","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of life on Earth required a supply of phosphorus (P) for the synthesis of universal biomolecules. Closed lakes may have accumulated high P concentrations on early Earth. However, it is not clear whether prebiotic P uptake in such settings would then have been sustainable. We show that large closed-basin lakes can combine high P concentrations at steady state with extremely high rates of biological productivity. Our case study is Mono Lake in California, which has close to 1 millimolar dissolved P at steady state despite extremely high rates of biological productivity, in contrast to smaller closed basins where life is scarce. Hence, large closed-basin lakes offer an environment where high rates of prebiotic P productivity can plausibly coexist with high steady-state P concentrations. Such lakes should have readily formed on the heavily cratered and volcanically active surface of early Earth.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":"eadq0027"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq0027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The origin of life on Earth required a supply of phosphorus (P) for the synthesis of universal biomolecules. Closed lakes may have accumulated high P concentrations on early Earth. However, it is not clear whether prebiotic P uptake in such settings would then have been sustainable. We show that large closed-basin lakes can combine high P concentrations at steady state with extremely high rates of biological productivity. Our case study is Mono Lake in California, which has close to 1 millimolar dissolved P at steady state despite extremely high rates of biological productivity, in contrast to smaller closed basins where life is scarce. Hence, large closed-basin lakes offer an environment where high rates of prebiotic P productivity can plausibly coexist with high steady-state P concentrations. Such lakes should have readily formed on the heavily cratered and volcanically active surface of early Earth.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.