{"title":"Semantic segmentation feature fusion network based on transformer.","authors":"Tianping Li, Zhaotong Cui, Hua Zhang","doi":"10.1038/s41598-025-90518-x","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks have demonstrated efficacy in acquiring local features and spatial details; however, they struggle to obtain global information, which could potentially compromise the segmentation of important regions of an image. Transformer can increase the expressiveness of pixels by establishing global relationships between them. Moreover, some transformer-based self-attentive methods do not combine the advantages of convolution, which makes the model require more computational parameters. This work uses both Transformer and CNN structures to improve the relationship between image-level regions and global information to improve segmentation accuracy and performance in order to address these two issues and improve the semantic segmentation results at the same time. We first build a Feature Alignment Module (FAM) module to enhance spatial details and improve channel representations. Second, we compute the link between similar pixels using a Transformer structure, which enhances the pixel representation. Finally, we design a Pyramid Convolutional Pooling Module (PCPM) that both compresses and enriches the feature maps, as well as determines the global correlations among the pixels, to reduce the computational burden on the transformer. These three elements come together to form a transformer-based semantic segmentation feature fusion network (FFTNet). Our method yields 82.5% mIoU, according to experimental results based on the Cityscapes test dataset. Furthermore, we conducted various visualization tests using the Pascal VOC 2012 and Cityscapes datasets. The results show that our approach outperforms alternative approaches.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6110"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90518-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks have demonstrated efficacy in acquiring local features and spatial details; however, they struggle to obtain global information, which could potentially compromise the segmentation of important regions of an image. Transformer can increase the expressiveness of pixels by establishing global relationships between them. Moreover, some transformer-based self-attentive methods do not combine the advantages of convolution, which makes the model require more computational parameters. This work uses both Transformer and CNN structures to improve the relationship between image-level regions and global information to improve segmentation accuracy and performance in order to address these two issues and improve the semantic segmentation results at the same time. We first build a Feature Alignment Module (FAM) module to enhance spatial details and improve channel representations. Second, we compute the link between similar pixels using a Transformer structure, which enhances the pixel representation. Finally, we design a Pyramid Convolutional Pooling Module (PCPM) that both compresses and enriches the feature maps, as well as determines the global correlations among the pixels, to reduce the computational burden on the transformer. These three elements come together to form a transformer-based semantic segmentation feature fusion network (FFTNet). Our method yields 82.5% mIoU, according to experimental results based on the Cityscapes test dataset. Furthermore, we conducted various visualization tests using the Pascal VOC 2012 and Cityscapes datasets. The results show that our approach outperforms alternative approaches.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.