Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra
{"title":"Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings.","authors":"Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra","doi":"10.1111/ppl.70109","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H<sub>2</sub>S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H<sub>2</sub>S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H<sub>2</sub>S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H<sub>2</sub>S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70109"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70109","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H2S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H2S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H2S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H2S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.

硫化氢和一氧化氮在提高黄瓜幼苗耐盐性中的协同效应。
盐度胁迫对植物生长和农业生产力构成重大威胁,影响到全世界数百万公顷的土地。盐毒性的不利影响主要是由土壤和水中的高水平氯化钠引起的,它破坏了植物的基本生理过程,导致产量下降和土壤质量退化。本研究深入研究了硫化氢(H2S)和一氧化氮(NO)在促进黄瓜耐盐胁迫中的潜在作用。本研究以H2S供体NaHS(硫化氢钠)和NO供体SNP(硝普钠)作为盐胁迫下黄瓜幼苗的处理。此外,利用L-NAME (n -硝基- l-精氨酸:100 μM)和cPTIO(2-苯基-4,4,5,5-四甲基咪唑啉-1-氧基- 3-氧化物)分别作为NO的抑制剂和清除剂,验证了NO在盐度存在下的参与。添加NaHS和SNP显著提高了鲜重、干重、株高和叶绿素含量,促进了盐胁迫下的生长。这些处理提高了内源性H2S和NO水平,上调了SOD、CAT、APX、GR、GPX和gst等抗氧化酶的水平。这种反应通过降低活性氧(ROS)和脂质过氧化作用来减少氧化损伤。NaHS和SNP在盐胁迫下的联合应用为提高植物对盐的适应能力、减少氧化胁迫,最终提高作物生产力提供了一种有前景且经济有效的策略。这些发现为H2S和NO供体在盐碱化环境中维持农业生产的潜在用途提供了重要见解,从而解决了粮食安全方面的重大全球挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信