{"title":"GT1 and ZmHB13/VRL1 regulate flower sexual differentiation by modulating jasmonate biosynthesis and signaling in maize.","authors":"Yateng Yuan, Xiaotong Ou, Minhao Yao, Pinle Wang, Chunlian Li, Guisen Zhang, Mengqi He, Heying Li, Xin Xu, Zhuojun Zhong, Yun Lu, Xiaojun Lai, Chen Zou, Jie Shen, Tianyu Zhang, Defan Liu, Yaoyao Li, Haiyang Wang, Dexin Kong, Qing Liu","doi":"10.1093/plphys/kiaf075","DOIUrl":null,"url":null,"abstract":"<p><p>As a typical monoecious plant, maize (Zea mays L.) produces unisexual male and female flowers comprising tassels and ears, respectively. However, the molecular mechanisms underlying unisexual flower development remain largely unclear. Here, we identify a pair of homeodomain-leucine zipper (HD-ZIP) transcription factors, Grassy tiller1 (GT1) and ZmHB13 (also termed VRS1-like1, VRL1), which act synergistically to control carpel development in maize. Mutations in GT1, but not ZmHB13/VRL1, cause defects in carpel abortion in the tassels, resulting in feminized tassels. The gt1 Zmhb13 double mutants show a notably more severe phenotype and a defect in the abortion of the lower floret in the ear spikelet, resulting in extra fertile flowers and seed setting. We demonstrate that GT1 and ZmHB13/VRL1 bind directly to the promoters of 2 jasmonate (JA) biosynthesis genes, ZmLOX3 and ZmOPR7, and upregulate their expression in the developing flowers. The application of methyl jasmonate (MeJA) rescues the feminized tassel phenotype of the gt1 Zmhb13 double mutants. Additionally, GT1 and ZmHB13/VRL1 interact with the key JA-pathway repressors ZmJAZ4 and ZmJAZ26, thus releasing the key JA-pathway activators ZmMYC2a and ZmMYC2b to activate the downstream JA signaling processes. Our findings indicate that GT1 and ZmHB13/VRL1 function synergistically to regulate maize carpel development through modulating JA biosynthesis and signaling.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a typical monoecious plant, maize (Zea mays L.) produces unisexual male and female flowers comprising tassels and ears, respectively. However, the molecular mechanisms underlying unisexual flower development remain largely unclear. Here, we identify a pair of homeodomain-leucine zipper (HD-ZIP) transcription factors, Grassy tiller1 (GT1) and ZmHB13 (also termed VRS1-like1, VRL1), which act synergistically to control carpel development in maize. Mutations in GT1, but not ZmHB13/VRL1, cause defects in carpel abortion in the tassels, resulting in feminized tassels. The gt1 Zmhb13 double mutants show a notably more severe phenotype and a defect in the abortion of the lower floret in the ear spikelet, resulting in extra fertile flowers and seed setting. We demonstrate that GT1 and ZmHB13/VRL1 bind directly to the promoters of 2 jasmonate (JA) biosynthesis genes, ZmLOX3 and ZmOPR7, and upregulate their expression in the developing flowers. The application of methyl jasmonate (MeJA) rescues the feminized tassel phenotype of the gt1 Zmhb13 double mutants. Additionally, GT1 and ZmHB13/VRL1 interact with the key JA-pathway repressors ZmJAZ4 and ZmJAZ26, thus releasing the key JA-pathway activators ZmMYC2a and ZmMYC2b to activate the downstream JA signaling processes. Our findings indicate that GT1 and ZmHB13/VRL1 function synergistically to regulate maize carpel development through modulating JA biosynthesis and signaling.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.