Oleksandr Baziei, Benjamín Loewe, Tyler N Shendruk
{"title":"Multiparticle collision framework for active polar fluids.","authors":"Oleksandr Baziei, Benjamín Loewe, Tyler N Shendruk","doi":"10.1103/PhysRevE.111.015416","DOIUrl":null,"url":null,"abstract":"<p><p>Sufficiently dense intrinsically out-of-equilibrium suspensions, such as those observed in biological systems, can be modeled as active fluids characterized by their orientational symmetry. While mesoscale numerical approaches to active nematic fluids have been developed, polar fluids are simulated as either ensembles of microscopic self-propelled particles or continuous hydrodynamic-scale equations of motion. To better simulate active polar fluids in complex geometries or as a solvent for suspensions, mesoscale numerical approaches are needed. In this work, the coarse-graining multiparticle collision dynamics (MPCD) framework is applied to three active particle models to produce mesoscale simulations of polar active fluids. The first active-polar MPCD (AP-MPCD) is a variant of the Vicsek model, while the second and third variants allow the speed of the particles to relax towards a self-propulsion speed subject to Andersen and Langevin thermostats, respectively. Each of these AP-MPCD variants exhibits a flocking transition at a critical activity and banding in the vicinity of the transition point. We leverage the mesoscale nature of AP-MPCD to explore flocking in the presence of external fields, which destroys banding, and anisotropic obstacles, which act as a ratchet that biases the flocking direction. These results demonstrate the capacity of AP-MPCD to capture the known phenomenology of polar active suspensions and its versatility to study active polar fluids in complex scenarios.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-2","pages":"015416"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.015416","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Sufficiently dense intrinsically out-of-equilibrium suspensions, such as those observed in biological systems, can be modeled as active fluids characterized by their orientational symmetry. While mesoscale numerical approaches to active nematic fluids have been developed, polar fluids are simulated as either ensembles of microscopic self-propelled particles or continuous hydrodynamic-scale equations of motion. To better simulate active polar fluids in complex geometries or as a solvent for suspensions, mesoscale numerical approaches are needed. In this work, the coarse-graining multiparticle collision dynamics (MPCD) framework is applied to three active particle models to produce mesoscale simulations of polar active fluids. The first active-polar MPCD (AP-MPCD) is a variant of the Vicsek model, while the second and third variants allow the speed of the particles to relax towards a self-propulsion speed subject to Andersen and Langevin thermostats, respectively. Each of these AP-MPCD variants exhibits a flocking transition at a critical activity and banding in the vicinity of the transition point. We leverage the mesoscale nature of AP-MPCD to explore flocking in the presence of external fields, which destroys banding, and anisotropic obstacles, which act as a ratchet that biases the flocking direction. These results demonstrate the capacity of AP-MPCD to capture the known phenomenology of polar active suspensions and its versatility to study active polar fluids in complex scenarios.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.