Maria P Marisova, Alexey V Andrianov, Alexey V Yulin, Elena A Anashkina
{"title":"Multistable states of light in two coupled silica microresonators with dominating thermo-optical nonlinearity.","authors":"Maria P Marisova, Alexey V Andrianov, Alexey V Yulin, Elena A Anashkina","doi":"10.1103/PhysRevE.111.014203","DOIUrl":null,"url":null,"abstract":"<p><p>We present a comprehensive theoretical analysis of thermo-optical multistability in two coupled silica microresonators with identical and slightly different partial eigenfrequencies. We consider a unidirectionally pumped system with a relatively low total Q-factor, where thermo-optical nonlinearity dominates. To analyze the system behavior, we employ a dynamical system approach that takes into account the hierarchy of the timescales associated with optical and thermal processes. We show that up to nine stationary states are possible for the same system parameters and that no more than four of them can be stable. Additionally, self-oscillation regimes are observed within specific parameter ranges. Bifurcations are discussed and nontrivial hysteretic switchings between light states under smooth pump frequency sweeping for different pump powers are demonstrated. It is also shown that even small intermode detuning can affect the dynamics of the system dramatically. This intriguing phenomenon is of fundamental interest and may potentially be used in the development of ultrasensitive sensors when operating near a bifurcation point, which is also discussed.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014203"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comprehensive theoretical analysis of thermo-optical multistability in two coupled silica microresonators with identical and slightly different partial eigenfrequencies. We consider a unidirectionally pumped system with a relatively low total Q-factor, where thermo-optical nonlinearity dominates. To analyze the system behavior, we employ a dynamical system approach that takes into account the hierarchy of the timescales associated with optical and thermal processes. We show that up to nine stationary states are possible for the same system parameters and that no more than four of them can be stable. Additionally, self-oscillation regimes are observed within specific parameter ranges. Bifurcations are discussed and nontrivial hysteretic switchings between light states under smooth pump frequency sweeping for different pump powers are demonstrated. It is also shown that even small intermode detuning can affect the dynamics of the system dramatically. This intriguing phenomenon is of fundamental interest and may potentially be used in the development of ultrasensitive sensors when operating near a bifurcation point, which is also discussed.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.