Data-driven ordinary-differential-equation modeling of high-frequency complex dynamics via a low-frequency dynamics model.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Natsuki Tsutsumi, Kengo Nakai, Yoshitaka Saiki
{"title":"Data-driven ordinary-differential-equation modeling of high-frequency complex dynamics via a low-frequency dynamics model.","authors":"Natsuki Tsutsumi, Kengo Nakai, Yoshitaka Saiki","doi":"10.1103/PhysRevE.111.014212","DOIUrl":null,"url":null,"abstract":"<p><p>In our previous paper [N. Tsutsumi et al., Chaos 32, 091101 (2022)10.1063/5.0100166], we proposed a method for constructing a system of differential equations of chaotic behavior from only observable deterministic time series, which we call the radial function-based regression (RfR) method. However, when the targeted variable's behavior is rather complex, the direct application of the RfR method does not function well. In this study, we propose a method of modeling such dynamics, including the high-frequency intermittent behavior of a fluid flow, by considering another variable (base variable) showing relatively simple, less intermittent behavior. We construct an autonomous joint model composed of two parts: the first is an autonomous system of a base variable, and the other concerns the targeted variable being affected by a term involving the base variable to demonstrate complex dynamics. The constructed joint model succeeded in not only inferring a short trajectory but also reconstructing chaotic sets and statistical properties obtained from a long trajectory such as the density distributions of the actual dynamics.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014212"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014212","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous paper [N. Tsutsumi et al., Chaos 32, 091101 (2022)10.1063/5.0100166], we proposed a method for constructing a system of differential equations of chaotic behavior from only observable deterministic time series, which we call the radial function-based regression (RfR) method. However, when the targeted variable's behavior is rather complex, the direct application of the RfR method does not function well. In this study, we propose a method of modeling such dynamics, including the high-frequency intermittent behavior of a fluid flow, by considering another variable (base variable) showing relatively simple, less intermittent behavior. We construct an autonomous joint model composed of two parts: the first is an autonomous system of a base variable, and the other concerns the targeted variable being affected by a term involving the base variable to demonstrate complex dynamics. The constructed joint model succeeded in not only inferring a short trajectory but also reconstructing chaotic sets and statistical properties obtained from a long trajectory such as the density distributions of the actual dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信