Shailendra K Rathor, Martin Ziegler, Jörg Schumacher
{"title":"Asymmetrically connected reservoir networks learn better.","authors":"Shailendra K Rathor, Martin Ziegler, Jörg Schumacher","doi":"10.1103/PhysRevE.111.015307","DOIUrl":null,"url":null,"abstract":"<p><p>We show that connectivity within the high-dimensional recurrent layer of a reservoir network is crucial for its performance. To this end, we systematically investigate the impact of network connectivity on its performance, i.e., we examine the symmetry and structure of the reservoir in relation to its computational power. Reservoirs with random and asymmetric connections are found to perform better for an exemplary Mackey-Glass time series than all structured reservoirs, including biologically inspired connectivities, such as small-world topologies. This result is quantified by the information processing capacity of the different network topologies which becomes highest for asymmetric and randomly connected networks.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-2","pages":"015307"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.015307","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We show that connectivity within the high-dimensional recurrent layer of a reservoir network is crucial for its performance. To this end, we systematically investigate the impact of network connectivity on its performance, i.e., we examine the symmetry and structure of the reservoir in relation to its computational power. Reservoirs with random and asymmetric connections are found to perform better for an exemplary Mackey-Glass time series than all structured reservoirs, including biologically inspired connectivities, such as small-world topologies. This result is quantified by the information processing capacity of the different network topologies which becomes highest for asymmetric and randomly connected networks.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.