Weighted-ensemble network simulations of the susceptible-infected-susceptible model of epidemics.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Elad Korngut, Ohad Vilk, Michael Assaf
{"title":"Weighted-ensemble network simulations of the susceptible-infected-susceptible model of epidemics.","authors":"Elad Korngut, Ohad Vilk, Michael Assaf","doi":"10.1103/PhysRevE.111.014146","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of erratic or unstable paths in standard kinetic Monte Carlo simulations significantly undermines the accurate simulation and sampling of transition pathways. While typically reliable methods, such as the Gillespie algorithm, are employed to simulate such paths, they encounter challenges in efficiently identifying rare events due to their sequential nature and reliance on exact Monte Carlo sampling. In contrast, the weighted-ensemble method effectively samples rare events and accelerates the exploration of complex reaction pathways by distributing computational resources among multiple replicas, where each replica is assigned a weight reflecting its importance, and evolves independently from the others. Here, we implement the highly efficient and robust weighted-ensemble method to model susceptible-infected-susceptible dynamics on large heterogeneous population networks, and explore the interplay between stochasticity and contact heterogeneity, which ultimately gives rise to disease clearance. Studying a wide variety of networks characterized by fat-tailed asymmetric degree distributions, we are able to compute the mean time to extinction and quasistationary distribution around it in previously inaccessible parameter regimes.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014146"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014146","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of erratic or unstable paths in standard kinetic Monte Carlo simulations significantly undermines the accurate simulation and sampling of transition pathways. While typically reliable methods, such as the Gillespie algorithm, are employed to simulate such paths, they encounter challenges in efficiently identifying rare events due to their sequential nature and reliance on exact Monte Carlo sampling. In contrast, the weighted-ensemble method effectively samples rare events and accelerates the exploration of complex reaction pathways by distributing computational resources among multiple replicas, where each replica is assigned a weight reflecting its importance, and evolves independently from the others. Here, we implement the highly efficient and robust weighted-ensemble method to model susceptible-infected-susceptible dynamics on large heterogeneous population networks, and explore the interplay between stochasticity and contact heterogeneity, which ultimately gives rise to disease clearance. Studying a wide variety of networks characterized by fat-tailed asymmetric degree distributions, we are able to compute the mean time to extinction and quasistationary distribution around it in previously inaccessible parameter regimes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信