Rapid and simple detection of anilinopyrimidine resistance in Botrytis cinerea by combining recombinase polymerase amplification with the CRISPR/Cas12a assay.

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES
Fei Fan, Min-Yi Wu, Hui-Qin Zhang, Guoqing Li, Chaoxi Luo
{"title":"Rapid and simple detection of anilinopyrimidine resistance in <i>Botrytis cinerea</i> by combining recombinase polymerase amplification with the CRISPR/Cas12a assay.","authors":"Fei Fan, Min-Yi Wu, Hui-Qin Zhang, Guoqing Li, Chaoxi Luo","doi":"10.1094/PDIS-11-24-2346-SR","DOIUrl":null,"url":null,"abstract":"<p><p>Anilinopyrimidine (AP) fungicides have been widely adopted to control Botrytis cinerea since the 1990s. As a high-risk pathogen for the development of fungicide resistance, B. cinerea developed resistance to AP fungicides soon after their application. To ensure the proper use of these fungicides, it is necessary to establish a rapid and simple method for resistance detection. Our previous study demonstrated that the E407K mutation in Bcmdl1 was the major mutation conferring AP resistance in China. Based on the combination of recombinase polymerase amplification (RPA) and CRISPR/Cas12a nucleic acid detection assay (RPA/Cas12a detection assay), a simple method for the rapid detection of AP resistance was established by specifically identifying this resistance-related mutation. The new detection assay could precisely identify the E407K mutants from other mutants and wild-type isolates within 50 minutes, relying solely on a water/metal bath and a UV flashlight. Moreover, this assay could detect genomic DNA at concentration as low as 1.8 × 106 fg/μL, which is comparable with conventional PCR, indicating its high sensitivity. High specificity among different species were also observed in this assay. Above all, this assay was compatible with a two-minute DNA extraction method, implying its feasibility for field application. In conclusion, the RPA/Cas12a detection assay developed in this study is rapid and simple, making it an ideal method for AP resistance detection in local agencies and other points of care. Instant information on resistance monitoring can provide important guidance on resistance management.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-11-24-2346-SR","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anilinopyrimidine (AP) fungicides have been widely adopted to control Botrytis cinerea since the 1990s. As a high-risk pathogen for the development of fungicide resistance, B. cinerea developed resistance to AP fungicides soon after their application. To ensure the proper use of these fungicides, it is necessary to establish a rapid and simple method for resistance detection. Our previous study demonstrated that the E407K mutation in Bcmdl1 was the major mutation conferring AP resistance in China. Based on the combination of recombinase polymerase amplification (RPA) and CRISPR/Cas12a nucleic acid detection assay (RPA/Cas12a detection assay), a simple method for the rapid detection of AP resistance was established by specifically identifying this resistance-related mutation. The new detection assay could precisely identify the E407K mutants from other mutants and wild-type isolates within 50 minutes, relying solely on a water/metal bath and a UV flashlight. Moreover, this assay could detect genomic DNA at concentration as low as 1.8 × 106 fg/μL, which is comparable with conventional PCR, indicating its high sensitivity. High specificity among different species were also observed in this assay. Above all, this assay was compatible with a two-minute DNA extraction method, implying its feasibility for field application. In conclusion, the RPA/Cas12a detection assay developed in this study is rapid and simple, making it an ideal method for AP resistance detection in local agencies and other points of care. Instant information on resistance monitoring can provide important guidance on resistance management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信