Burst-tree structure and higher-order temporal correlations.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Tibebe Birhanu, Hang-Hyun Jo
{"title":"Burst-tree structure and higher-order temporal correlations.","authors":"Tibebe Birhanu, Hang-Hyun Jo","doi":"10.1103/PhysRevE.111.014308","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the characteristics of temporal correlations in a time series is crucial for developing accurate models in natural and social sciences. The burst-tree decomposition method was recently introduced to reveal temporal correlations in a time series in the form of an event sequence, in particular, the hierarchical structure of bursty trains of events for the entire range of timescales [Jo et al., Sci. Rep. 10, 12202 (2020)10.1038/s41598-020-68157-1]. Such structure cannot be solely captured by the interevent time distribution but can show higher-order correlations beyond interevent times. It has been found to be simply characterized by the burst-merging kernel governing which bursts are merged together as the timescale for defining bursts increases. In this work, we study the effects of kernels on the higher-order temporal correlations in terms of burst-size distributions, memory coefficients for bursts, and the autocorrelation function. We employ several kernels, including the constant, sum, product, and diagonal kernels as well as those inspired by empirical results. We generically find that kernels with preferential merging lead to heavy-tailed burst-size distributions, while kernels with assortative merging lead to positive correlations between burst sizes. The decaying exponent of the autocorrelation function depends not only on the kernel but also on the power-law exponent of the interevent time distribution. In addition, thanks to the analogy to the coagulation process, analytical solutions of burst-size distributions for some kernels could be obtained. Our findings may shed light on the role of burst-merging kernels as underlying mechanisms of higher-order temporal correlations in a time series.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014308"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the characteristics of temporal correlations in a time series is crucial for developing accurate models in natural and social sciences. The burst-tree decomposition method was recently introduced to reveal temporal correlations in a time series in the form of an event sequence, in particular, the hierarchical structure of bursty trains of events for the entire range of timescales [Jo et al., Sci. Rep. 10, 12202 (2020)10.1038/s41598-020-68157-1]. Such structure cannot be solely captured by the interevent time distribution but can show higher-order correlations beyond interevent times. It has been found to be simply characterized by the burst-merging kernel governing which bursts are merged together as the timescale for defining bursts increases. In this work, we study the effects of kernels on the higher-order temporal correlations in terms of burst-size distributions, memory coefficients for bursts, and the autocorrelation function. We employ several kernels, including the constant, sum, product, and diagonal kernels as well as those inspired by empirical results. We generically find that kernels with preferential merging lead to heavy-tailed burst-size distributions, while kernels with assortative merging lead to positive correlations between burst sizes. The decaying exponent of the autocorrelation function depends not only on the kernel but also on the power-law exponent of the interevent time distribution. In addition, thanks to the analogy to the coagulation process, analytical solutions of burst-size distributions for some kernels could be obtained. Our findings may shed light on the role of burst-merging kernels as underlying mechanisms of higher-order temporal correlations in a time series.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信