Modeling the accuracy of Xylella fastidiosa molecular diagnostic tests in naturally-infected almond tree samples.

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES
María Del Pilar Velasco Amo, Concepción Olivares-García, Miguel Román-Écija, Ester Marco-Noales, Juan A Navas-Cortés, Blanca Beatriz Landa Del Castillo
{"title":"Modeling the accuracy of <i>Xylella fastidiosa</i> molecular diagnostic tests in naturally-infected almond tree samples.","authors":"María Del Pilar Velasco Amo, Concepción Olivares-García, Miguel Román-Écija, Ester Marco-Noales, Juan A Navas-Cortés, Blanca Beatriz Landa Del Castillo","doi":"10.1094/PDIS-12-24-2568-RE","DOIUrl":null,"url":null,"abstract":"<p><p>Xylella fastidiosa (Xf) is a quarantine plant pathogen in the European Union, recognized as a high-priority pest due to its devastating cultural and economic impact on crops, ornamental plants, and landscape vegetation. The development and implementation of reliable, sensitive, and specific diagnostic methods for Xf detection are critical to ensure the production and trade of healthy plant material and to facilitate effective control measures, primarily aimed at eradication. Despite the availability of numerous detection protocols, their diagnostic parameters remain not precisely defined, and no universally accepted gold-standard protocol exists. This study compared the global accuracy and performance of six molecular assays using almond samples collected from naturally infected almond trees in the Alicante Demarcated Area, Spain. Additionally, the study evaluated the influence of plant sample type (leaf petioles versus woody chips) on diagnostic accuracy. Harper-qPCR and Li-qPCR assays demonstrated the highest sensitivity, with detection limits as low as 2.8-3 fg of Xf DNA. Droplet digital PCR (ddPCR) exhibited excellent sensitivity for woody chip samples, while Li-qPCR showed superior specificity across both tissue types. In contrast, Recombinase Polymerase Amplification (RPA) displayed lower detection limits and reproducibility compared to qPCR-based methods. Bayesian latent class models indicated that combining Harper-qPCR and Li-qPCR for petioles, or Harper-qPCR and ddPCR for wood samples, optimized diagnostic reliability by reducing false negatives, which is critical in buffer zones under eradication while maintaining high specificity. These findings emphasize the need for tailoring diagnostic protocols to the epidemiological context, balancing sensitivity and specificity to optimize surveillance schemes for Xf and to support effective phytosanitary management strategies.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-12-24-2568-RE","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Xylella fastidiosa (Xf) is a quarantine plant pathogen in the European Union, recognized as a high-priority pest due to its devastating cultural and economic impact on crops, ornamental plants, and landscape vegetation. The development and implementation of reliable, sensitive, and specific diagnostic methods for Xf detection are critical to ensure the production and trade of healthy plant material and to facilitate effective control measures, primarily aimed at eradication. Despite the availability of numerous detection protocols, their diagnostic parameters remain not precisely defined, and no universally accepted gold-standard protocol exists. This study compared the global accuracy and performance of six molecular assays using almond samples collected from naturally infected almond trees in the Alicante Demarcated Area, Spain. Additionally, the study evaluated the influence of plant sample type (leaf petioles versus woody chips) on diagnostic accuracy. Harper-qPCR and Li-qPCR assays demonstrated the highest sensitivity, with detection limits as low as 2.8-3 fg of Xf DNA. Droplet digital PCR (ddPCR) exhibited excellent sensitivity for woody chip samples, while Li-qPCR showed superior specificity across both tissue types. In contrast, Recombinase Polymerase Amplification (RPA) displayed lower detection limits and reproducibility compared to qPCR-based methods. Bayesian latent class models indicated that combining Harper-qPCR and Li-qPCR for petioles, or Harper-qPCR and ddPCR for wood samples, optimized diagnostic reliability by reducing false negatives, which is critical in buffer zones under eradication while maintaining high specificity. These findings emphasize the need for tailoring diagnostic protocols to the epidemiological context, balancing sensitivity and specificity to optimize surveillance schemes for Xf and to support effective phytosanitary management strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信