Precise gene expression deconvolution in spatial transcriptomics with STged.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jia-Juan Tu, Hong Yan, Xiao-Fei Zhang, Zhixiang Lin
{"title":"Precise gene expression deconvolution in spatial transcriptomics with STged.","authors":"Jia-Juan Tu, Hong Yan, Xiao-Fei Zhang, Zhixiang Lin","doi":"10.1093/nar/gkaf087","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) has transformed tissue biology by linking gene expression profiles with spatial information. However, sequencing-based SRT methods aggregate signals from multiple cell types within capture locations (\"spots\"), masking cell-type-specific gene expression patterns. Traditional cell-type deconvolution methods estimate cell compositions within spots but fail to resolve cell-type-specific gene expression, limiting their ability to uncover critical biological processes such as cellular interactions and microenvironmental dynamics. Here, we present STged (spatial transcriptomic gene expression deconvolution), a novel computational framework that goes beyond traditional deconvolution by reconstructing cell-type-specific gene expression profiles from mixed spots. STged integrates graph-based spatial correlations and reference-derived gene signatures using a non-negative least-squares regression framework, achieving precise and biologically meaningful deconvolution. Comprehensive simulations show that STged consistently outperforms existing methods in accuracy and robustness. Applications to human pancreatic ductal adenocarcinoma and human squamous cell carcinoma datasets reveal its capacity to identify microenvironment-specific highly variable genes, reconstruct spatial cell-cell communication networks, and resolve tissue architecture at near-single-cell resolution. In mouse kidney tissues, STged uncovers dynamic spatial gene expression patterns and distinct gene programs, advancing our understanding of tissue heterogeneity and cellular dynamics.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf087","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) has transformed tissue biology by linking gene expression profiles with spatial information. However, sequencing-based SRT methods aggregate signals from multiple cell types within capture locations ("spots"), masking cell-type-specific gene expression patterns. Traditional cell-type deconvolution methods estimate cell compositions within spots but fail to resolve cell-type-specific gene expression, limiting their ability to uncover critical biological processes such as cellular interactions and microenvironmental dynamics. Here, we present STged (spatial transcriptomic gene expression deconvolution), a novel computational framework that goes beyond traditional deconvolution by reconstructing cell-type-specific gene expression profiles from mixed spots. STged integrates graph-based spatial correlations and reference-derived gene signatures using a non-negative least-squares regression framework, achieving precise and biologically meaningful deconvolution. Comprehensive simulations show that STged consistently outperforms existing methods in accuracy and robustness. Applications to human pancreatic ductal adenocarcinoma and human squamous cell carcinoma datasets reveal its capacity to identify microenvironment-specific highly variable genes, reconstruct spatial cell-cell communication networks, and resolve tissue architecture at near-single-cell resolution. In mouse kidney tissues, STged uncovers dynamic spatial gene expression patterns and distinct gene programs, advancing our understanding of tissue heterogeneity and cellular dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信