Jia-Juan Tu, Hong Yan, Xiao-Fei Zhang, Zhixiang Lin
{"title":"Precise gene expression deconvolution in spatial transcriptomics with STged.","authors":"Jia-Juan Tu, Hong Yan, Xiao-Fei Zhang, Zhixiang Lin","doi":"10.1093/nar/gkaf087","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) has transformed tissue biology by linking gene expression profiles with spatial information. However, sequencing-based SRT methods aggregate signals from multiple cell types within capture locations (\"spots\"), masking cell-type-specific gene expression patterns. Traditional cell-type deconvolution methods estimate cell compositions within spots but fail to resolve cell-type-specific gene expression, limiting their ability to uncover critical biological processes such as cellular interactions and microenvironmental dynamics. Here, we present STged (spatial transcriptomic gene expression deconvolution), a novel computational framework that goes beyond traditional deconvolution by reconstructing cell-type-specific gene expression profiles from mixed spots. STged integrates graph-based spatial correlations and reference-derived gene signatures using a non-negative least-squares regression framework, achieving precise and biologically meaningful deconvolution. Comprehensive simulations show that STged consistently outperforms existing methods in accuracy and robustness. Applications to human pancreatic ductal adenocarcinoma and human squamous cell carcinoma datasets reveal its capacity to identify microenvironment-specific highly variable genes, reconstruct spatial cell-cell communication networks, and resolve tissue architecture at near-single-cell resolution. In mouse kidney tissues, STged uncovers dynamic spatial gene expression patterns and distinct gene programs, advancing our understanding of tissue heterogeneity and cellular dynamics.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf087","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially resolved transcriptomics (SRT) has transformed tissue biology by linking gene expression profiles with spatial information. However, sequencing-based SRT methods aggregate signals from multiple cell types within capture locations ("spots"), masking cell-type-specific gene expression patterns. Traditional cell-type deconvolution methods estimate cell compositions within spots but fail to resolve cell-type-specific gene expression, limiting their ability to uncover critical biological processes such as cellular interactions and microenvironmental dynamics. Here, we present STged (spatial transcriptomic gene expression deconvolution), a novel computational framework that goes beyond traditional deconvolution by reconstructing cell-type-specific gene expression profiles from mixed spots. STged integrates graph-based spatial correlations and reference-derived gene signatures using a non-negative least-squares regression framework, achieving precise and biologically meaningful deconvolution. Comprehensive simulations show that STged consistently outperforms existing methods in accuracy and robustness. Applications to human pancreatic ductal adenocarcinoma and human squamous cell carcinoma datasets reveal its capacity to identify microenvironment-specific highly variable genes, reconstruct spatial cell-cell communication networks, and resolve tissue architecture at near-single-cell resolution. In mouse kidney tissues, STged uncovers dynamic spatial gene expression patterns and distinct gene programs, advancing our understanding of tissue heterogeneity and cellular dynamics.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.