Breathing chimera states in nonlocally coupled type-I excitable phase oscillators.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Yang Li, Haihong Li, Jinfeng Liang, Xuan Wang, Qionglin Dai, Junzhong Yang
{"title":"Breathing chimera states in nonlocally coupled type-I excitable phase oscillators.","authors":"Yang Li, Haihong Li, Jinfeng Liang, Xuan Wang, Qionglin Dai, Junzhong Yang","doi":"10.1103/PhysRevE.111.014222","DOIUrl":null,"url":null,"abstract":"<p><p>We explore chimera states in a ring of nonlocally coupled type-I excitable phase oscillators, with each isolated oscillator being restricted to a homogeneous equilibrium state. Our study identifies the presence of breathing chimera states, characterized by their oscillatory dynamics and periodic fluctuations in the global order parameter. Beyond the breathing chimera states with a single coherent cluster, we find the 2n-cluster breathing chimera states, where 2n represents an even number of coherent clusters. These states exhibit the varying phase difference between adjacent clusters and a consistent phase among clusters separated by one intermediate cluster. The number of clusters is found to be modulated by the relative coupling radius. These dynamics for the finite number of oscillators are well confirmed by the Ott-Antonsen ansatz.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014222"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014222","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We explore chimera states in a ring of nonlocally coupled type-I excitable phase oscillators, with each isolated oscillator being restricted to a homogeneous equilibrium state. Our study identifies the presence of breathing chimera states, characterized by their oscillatory dynamics and periodic fluctuations in the global order parameter. Beyond the breathing chimera states with a single coherent cluster, we find the 2n-cluster breathing chimera states, where 2n represents an even number of coherent clusters. These states exhibit the varying phase difference between adjacent clusters and a consistent phase among clusters separated by one intermediate cluster. The number of clusters is found to be modulated by the relative coupling radius. These dynamics for the finite number of oscillators are well confirmed by the Ott-Antonsen ansatz.

非局部耦合i型可激相振荡器的呼吸嵌合体态。
我们研究了非局部耦合i型可激相振荡器环中的嵌合体状态,其中每个孤立振荡器被限制为均匀平衡态。我们的研究确定了呼吸嵌合体状态的存在,其特征是它们的振荡动力学和全球秩序参数的周期性波动。除了具有单个相干簇的呼吸嵌合体状态外,我们还发现了2n簇呼吸嵌合体状态,其中2n表示偶数个相干簇。这些状态表现为相邻簇之间的相位差不同,而被一个中间簇隔开的簇之间的相位差一致。发现簇的数量受相对耦合半径的调制。对于有限数量的振子,这些动力学被奥特-安东森分析很好地证实了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信