Structure of random Turing-like patterns in discrete-time systems is determined by the initial conditions.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Huimin Zhang, Jian Gao, Changgui Gu, Chuansheng Shen, Huijie Yang
{"title":"Structure of random Turing-like patterns in discrete-time systems is determined by the initial conditions.","authors":"Huimin Zhang, Jian Gao, Changgui Gu, Chuansheng Shen, Huijie Yang","doi":"10.1103/PhysRevE.111.014206","DOIUrl":null,"url":null,"abstract":"<p><p>Patterns, spatiotemporal ordered structures, are prevalent in diverse systems, arising from the emergence of complexity. Turing proposed a mechanism that involves a short-range activator and a long-range inhibitor to explain the formation of patterns, and patterns that satisfy this mechanism are called Turing patterns. Patterns with similar structures but not caused by the Turing mechanism are referred to as Turing-like patterns. In the absence of external influences, the structure of Turing patterns is generally determined by control parameters. In this study, we revealed that the structure of Turing-like patterns in discrete-time systems is only determined by the ratio of states in the initial conditions. As the ratio changes, the structure of patterns transitions from spots to labyrinth and eventually to inverse spots. We proposed the structure parameter for the quantitative description of the structure of the patterns. And the structure parameter is directly proportional to the ratio in the initial conditions. The mechanism underlying this structure control is attributed to the traversability of multiperiodic states in discrete-time systems, where each local point will go through all states in the periodic orbit. Our findings shed light on the pattern formation for Turing-like patterns in discrete-time systems.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014206"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014206","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Patterns, spatiotemporal ordered structures, are prevalent in diverse systems, arising from the emergence of complexity. Turing proposed a mechanism that involves a short-range activator and a long-range inhibitor to explain the formation of patterns, and patterns that satisfy this mechanism are called Turing patterns. Patterns with similar structures but not caused by the Turing mechanism are referred to as Turing-like patterns. In the absence of external influences, the structure of Turing patterns is generally determined by control parameters. In this study, we revealed that the structure of Turing-like patterns in discrete-time systems is only determined by the ratio of states in the initial conditions. As the ratio changes, the structure of patterns transitions from spots to labyrinth and eventually to inverse spots. We proposed the structure parameter for the quantitative description of the structure of the patterns. And the structure parameter is directly proportional to the ratio in the initial conditions. The mechanism underlying this structure control is attributed to the traversability of multiperiodic states in discrete-time systems, where each local point will go through all states in the periodic orbit. Our findings shed light on the pattern formation for Turing-like patterns in discrete-time systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信