{"title":"Yang-Lee zeros for real-space condensation.","authors":"Zdzislaw Burda, Desmond A Johnston, Mario Kieburg","doi":"10.1103/PhysRevE.111.L012101","DOIUrl":null,"url":null,"abstract":"<p><p>Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012101"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L012101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.