{"title":"Stochastic Kuramoto oscillators with inertia and higher-order interactions.","authors":"Priyanka Rajwani, Sarika Jalan","doi":"10.1103/PhysRevE.111.L012202","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of noise in coupled oscillators with pairwise interactions has been extensively explored. Here, we study stochastic second-order coupled Kuramoto oscillators with higher-order interactions and show that as noise strength increases, the critical points associated with synchronization transitions shift toward higher coupling values. By employing the perturbation analysis, we obtain an expression for the forward critical point as a function of inertia and noise strength. Further, for overdamped systems, we show that as noise strength increases, the first-order transition switches to second-order even for higher-order couplings. We include a discussion on the nature of critical points obtained through Ott-Antonsen ansatz.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012202"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L012202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of noise in coupled oscillators with pairwise interactions has been extensively explored. Here, we study stochastic second-order coupled Kuramoto oscillators with higher-order interactions and show that as noise strength increases, the critical points associated with synchronization transitions shift toward higher coupling values. By employing the perturbation analysis, we obtain an expression for the forward critical point as a function of inertia and noise strength. Further, for overdamped systems, we show that as noise strength increases, the first-order transition switches to second-order even for higher-order couplings. We include a discussion on the nature of critical points obtained through Ott-Antonsen ansatz.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.