B Clavier, D Zarzoso, D Del-Castillo-Negrete, E Frénod
{"title":"Generative-machine-learning surrogate model of plasma turbulence.","authors":"B Clavier, D Zarzoso, D Del-Castillo-Negrete, E Frénod","doi":"10.1103/PhysRevE.111.L013202","DOIUrl":null,"url":null,"abstract":"<p><p>Generative artificial intelligence methods are employed for the first time to construct a surrogate model for plasma turbulence that enables long-time transport simulations. The proposed GAIT (Generative Artificial Intelligence Turbulence) model is based on the coupling of a convolutional variational autoencoder that encodes precomputed turbulence data into a reduced latent space, and a recurrent neural network and decoder that generate new turbulence states 400 times faster than the direct numerical integration. The model is applied to the Hasegawa-Wakatani (HW) plasma turbulence model, which is closely related to the quasigeostrophic model used in geophysical fluid dynamics. Very good agreement is found between the GAIT and the HW models in the spatiotemporal Fourier and Proper Orthogonal Decomposition spectra, and the flow topology characterized by the Okubo-Weiss decomposition. The GAIT model also reproduces Lagrangian transport including the probability distribution function of particle displacements and the effective turbulent diffusivity.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L013202"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L013202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence methods are employed for the first time to construct a surrogate model for plasma turbulence that enables long-time transport simulations. The proposed GAIT (Generative Artificial Intelligence Turbulence) model is based on the coupling of a convolutional variational autoencoder that encodes precomputed turbulence data into a reduced latent space, and a recurrent neural network and decoder that generate new turbulence states 400 times faster than the direct numerical integration. The model is applied to the Hasegawa-Wakatani (HW) plasma turbulence model, which is closely related to the quasigeostrophic model used in geophysical fluid dynamics. Very good agreement is found between the GAIT and the HW models in the spatiotemporal Fourier and Proper Orthogonal Decomposition spectra, and the flow topology characterized by the Okubo-Weiss decomposition. The GAIT model also reproduces Lagrangian transport including the probability distribution function of particle displacements and the effective turbulent diffusivity.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.