{"title":"Exact distributions of threshold crossing times of proteins under post-transcriptional regulation by small RNAs.","authors":"Syed Yunus Ali, Ashok Prasad, Dibyendu Das","doi":"10.1103/PhysRevE.111.014405","DOIUrl":null,"url":null,"abstract":"<p><p>The timings of several cellular events like cell lysis, cell division, or pore formation in endosomes are regulated by the time taken for the relevant proteins to cross a threshold in number or concentration. Since protein synthesis is stochastic, the threshold crossing time is a first passage problem. The exact distributions of these first passage processes have been obtained recently for unregulated and autoregulated genes. Many proteins are however regulated by post-transcriptional regulation, controlled by small noncoding RNAs (sRNAs). Certain mathematical models of gene expression with post-transcriptional sRNA regulation have been recently exactly mapped to models without sRNA regulation. Utilizing this mapping and the exact distributions, we calculate exact results on fluctuations (full distribution, all cumulants, and characteristic times) of protein threshold crossing times in the presence of sRNA regulation. We derive two interesting predictions from these exact results. We show that the size of the fluctuation of the threshold crossing times have a nonmonotonic U-shaped behavior as a function of the rates of binding and unbinding of the sRNA-mRNA complex. Thus there are optimal parameters that minimize noise. Furthermore, the fluctuations in models with sRNA regulation may be higher or lower compared to the model without regulation, depending on the mean protein burst size.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014405"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014405","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The timings of several cellular events like cell lysis, cell division, or pore formation in endosomes are regulated by the time taken for the relevant proteins to cross a threshold in number or concentration. Since protein synthesis is stochastic, the threshold crossing time is a first passage problem. The exact distributions of these first passage processes have been obtained recently for unregulated and autoregulated genes. Many proteins are however regulated by post-transcriptional regulation, controlled by small noncoding RNAs (sRNAs). Certain mathematical models of gene expression with post-transcriptional sRNA regulation have been recently exactly mapped to models without sRNA regulation. Utilizing this mapping and the exact distributions, we calculate exact results on fluctuations (full distribution, all cumulants, and characteristic times) of protein threshold crossing times in the presence of sRNA regulation. We derive two interesting predictions from these exact results. We show that the size of the fluctuation of the threshold crossing times have a nonmonotonic U-shaped behavior as a function of the rates of binding and unbinding of the sRNA-mRNA complex. Thus there are optimal parameters that minimize noise. Furthermore, the fluctuations in models with sRNA regulation may be higher or lower compared to the model without regulation, depending on the mean protein burst size.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.