A large-scale integrated transcriptomic atlas for soybean organ development.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingwei Fan, Yanting Shen, Chuan Chen, Xi Chen, Xiaoyue Yang, Haixia Liu, Ruiying Chen, Shulin Liu, Bohan Zhang, Min Zhang, Guoan Zhou, Yu Wang, Haixi Sun, Yuqiang Jiang, Xiaofeng Wei, Tao Yang, Yucheng Liu, Dongmei Tian, Ziqing Deng, Xun Xu, Xin Liu, Zhixi Tian
{"title":"A large-scale integrated transcriptomic atlas for soybean organ development.","authors":"Jingwei Fan, Yanting Shen, Chuan Chen, Xi Chen, Xiaoyue Yang, Haixia Liu, Ruiying Chen, Shulin Liu, Bohan Zhang, Min Zhang, Guoan Zhou, Yu Wang, Haixi Sun, Yuqiang Jiang, Xiaofeng Wei, Tao Yang, Yucheng Liu, Dongmei Tian, Ziqing Deng, Xun Xu, Xin Liu, Zhixi Tian","doi":"10.1016/j.molp.2025.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean is one of the most important crops in the world and its production needs to be significantly increased to meet the escalating global demand. Elucidating the genetic regulatory networks underlying soybean organ development is critical for breeding elite and resilient varieties to ensure an increase in soybean production under the changing climates. Integrated transcriptomic atlas that leverages multiple types of transcriptomic data can facilitate the characterization of temporal-spatial expression patterns of most organ development-related genes and thereby help understand organ developmental processes. Here, we constructed a comprehensive integrated transcriptomic atlas for soybean, integrating bulk RNA-seq dataset from 314 samples across the soybean life cycle, along with snRNA-seq and Stereo-seq datasets from five organs: root, nodule, shoot apical, leaf and stem. Taking the investigations of genes related to organ specificity, blade development and nodule formation as examples, we show that the atlas has robust power for exploring key genes involved in organ formation. In addition, we built a user-friendly panoramic database for the transcriptomic atlas, facilitating easy access and queries, which will serve as a valuable resource to significantly advance future soybean functional studies.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.02.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soybean is one of the most important crops in the world and its production needs to be significantly increased to meet the escalating global demand. Elucidating the genetic regulatory networks underlying soybean organ development is critical for breeding elite and resilient varieties to ensure an increase in soybean production under the changing climates. Integrated transcriptomic atlas that leverages multiple types of transcriptomic data can facilitate the characterization of temporal-spatial expression patterns of most organ development-related genes and thereby help understand organ developmental processes. Here, we constructed a comprehensive integrated transcriptomic atlas for soybean, integrating bulk RNA-seq dataset from 314 samples across the soybean life cycle, along with snRNA-seq and Stereo-seq datasets from five organs: root, nodule, shoot apical, leaf and stem. Taking the investigations of genes related to organ specificity, blade development and nodule formation as examples, we show that the atlas has robust power for exploring key genes involved in organ formation. In addition, we built a user-friendly panoramic database for the transcriptomic atlas, facilitating easy access and queries, which will serve as a valuable resource to significantly advance future soybean functional studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信