Noise-induced transitions from contractile to extensile active stress in isotropic fluids.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Mathieu Dedenon, Karsten Kruse
{"title":"Noise-induced transitions from contractile to extensile active stress in isotropic fluids.","authors":"Mathieu Dedenon, Karsten Kruse","doi":"10.1103/PhysRevE.111.015426","DOIUrl":null,"url":null,"abstract":"<p><p>Tissues of living cells are a prime example of active fluids. There is experimental evidence that tissues generate extensile active stress even though their constituting cells are contractile. Fluctuating forces that could result from cell-substrate interactions have been proposed to be able to induce a transition from contractile to extensile active stress. We define the notion of contractile and extensile active stress in isotropic and anisotropic active matter. Through analytic calculations and numerical computations, we then show that in isotropic active fluids, nonlinearities and coupling between fluctuating forces and fluid density are necessary for such a transition to occur. Here, both transitions from extensile to contractile and vice versa are possible.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-2","pages":"015426"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.015426","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Tissues of living cells are a prime example of active fluids. There is experimental evidence that tissues generate extensile active stress even though their constituting cells are contractile. Fluctuating forces that could result from cell-substrate interactions have been proposed to be able to induce a transition from contractile to extensile active stress. We define the notion of contractile and extensile active stress in isotropic and anisotropic active matter. Through analytic calculations and numerical computations, we then show that in isotropic active fluids, nonlinearities and coupling between fluctuating forces and fluid density are necessary for such a transition to occur. Here, both transitions from extensile to contractile and vice versa are possible.

各向同性流体中由收缩主动应力到伸展主动应力的噪声诱导转变。
活细胞组织是活性液体的一个主要例子。有实验证据表明,即使组织的构成细胞是收缩的,组织也会产生可拉伸的主动应力。由细胞-基质相互作用产生的波动力已被提出能够诱导从收缩到拉伸的主动应力的过渡。在各向同性和各向异性活性物质中定义了收缩和伸展活性应力的概念。通过解析计算和数值计算,我们表明,在各向同性的活动流体中,非线性和波动力与流体密度之间的耦合是发生这种转变的必要条件。在这里,从可拉伸到可收缩的两种转换都是可能的,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信