Polycystic ovary syndrome and epithelial-mesenchymal transition: Mendelian randomization and single-cell analysis insights.

IF 3.8 3区 医学 Q1 REPRODUCTIVE BIOLOGY
Dong Liu, Dan Liu, Kunyan Zhou
{"title":"Polycystic ovary syndrome and epithelial-mesenchymal transition: Mendelian randomization and single-cell analysis insights.","authors":"Dong Liu, Dan Liu, Kunyan Zhou","doi":"10.1186/s13048-025-01617-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The process of epithelial-mesenchymal transition (EMT) may promote fibrosis in ovarian tissue related to polycystic ovary syndrome (PCOS), thus affecting ovarian function and hormonal balance.</p><p><strong>Objective: </strong>This study aimed to explore key genes associated with EMT in PCOS and their potential molecular regulatory mechanisms, exclusively from the perspective of transcriptomics and single-cell RNA sequencing (scRNA-seq), combined with Mendelian Randomization (MR) analysis.</p><p><strong>Methods: </strong>The dataset for PCOS and EMT-related genes (EMT-RGs) were sourced from public databases. The key genes in this study were identified via differential expression analysis, MR, and evaluation of expression levels. Enrichment analysis and a series of functional analyses were conducted on these genes to further elucidate their potential mechanisms. Subsequently, using scRNA-seq data and validation of the expression of key genes, key cell group in PCOS were identified, followed by pseudo-time and cell communication analyses to provide deeper insights.</p><p><strong>Results: </strong>Three key genes, NUCB2 [odds ratio (OR) = 0.8634, 95% confidence interval (CI): 0.8145-0.9152, P < 0.0001], PGF (OR = 0.8393, 95% CI: 0.7185-0.9805, P < 0.05), and CRIM1 (OR = 0.7539, 95% CI: 0.6556-0.670, P < 0.0001), were identified as having a unidirectional causal association with PCOS and were associated with a reduced risk of PCOS. In public datasets, NUCB2 exhibited significantly increased expression in PCOS samples, while PGF and CRIM1 showed the opposite trends. These three genes were enriched in pathways related to cellular functions, metabolic processes, and the operation of the nervous system, and they were co-expressed in smooth muscle. Additionally, five cell clusters were annotated, among which fibroblasts were identified as key cells due to their highest expression of all three key genes. Further analysis revealed a bifurcation event occurring during the mid-development stage of fibroblasts, with PCOS samples displaying a higher abundance of fibroblasts. In PCOS samples, fibroblasts exhibited more extensive communication with secretory epithelial cells, indicating a more complex intercellular interaction within this condition.</p><p><strong>Conclusion: </strong>This study identified three EMT-RGs: NUCB2, PGF, and CRIM1, which were associated with a reduced risk of PCOS, with fibroblast identified as a key cell group in the disease's pathology. This provides new insights for PCOS research.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"33"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01617-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The process of epithelial-mesenchymal transition (EMT) may promote fibrosis in ovarian tissue related to polycystic ovary syndrome (PCOS), thus affecting ovarian function and hormonal balance.

Objective: This study aimed to explore key genes associated with EMT in PCOS and their potential molecular regulatory mechanisms, exclusively from the perspective of transcriptomics and single-cell RNA sequencing (scRNA-seq), combined with Mendelian Randomization (MR) analysis.

Methods: The dataset for PCOS and EMT-related genes (EMT-RGs) were sourced from public databases. The key genes in this study were identified via differential expression analysis, MR, and evaluation of expression levels. Enrichment analysis and a series of functional analyses were conducted on these genes to further elucidate their potential mechanisms. Subsequently, using scRNA-seq data and validation of the expression of key genes, key cell group in PCOS were identified, followed by pseudo-time and cell communication analyses to provide deeper insights.

Results: Three key genes, NUCB2 [odds ratio (OR) = 0.8634, 95% confidence interval (CI): 0.8145-0.9152, P < 0.0001], PGF (OR = 0.8393, 95% CI: 0.7185-0.9805, P < 0.05), and CRIM1 (OR = 0.7539, 95% CI: 0.6556-0.670, P < 0.0001), were identified as having a unidirectional causal association with PCOS and were associated with a reduced risk of PCOS. In public datasets, NUCB2 exhibited significantly increased expression in PCOS samples, while PGF and CRIM1 showed the opposite trends. These three genes were enriched in pathways related to cellular functions, metabolic processes, and the operation of the nervous system, and they were co-expressed in smooth muscle. Additionally, five cell clusters were annotated, among which fibroblasts were identified as key cells due to their highest expression of all three key genes. Further analysis revealed a bifurcation event occurring during the mid-development stage of fibroblasts, with PCOS samples displaying a higher abundance of fibroblasts. In PCOS samples, fibroblasts exhibited more extensive communication with secretory epithelial cells, indicating a more complex intercellular interaction within this condition.

Conclusion: This study identified three EMT-RGs: NUCB2, PGF, and CRIM1, which were associated with a reduced risk of PCOS, with fibroblast identified as a key cell group in the disease's pathology. This provides new insights for PCOS research.

多囊卵巢综合征和上皮间质转化:孟德尔随机化和单细胞分析见解。
背景:上皮-间质转化(epithelial-mesenchymal transition, EMT)过程可能促进多囊卵巢综合征(PCOS)相关卵巢组织纤维化,从而影响卵巢功能和激素平衡。目的:本研究旨在从转录组学和单细胞RNA测序(scRNA-seq)的角度,结合孟德尔随机化(Mendelian Randomization, MR)分析,探索PCOS中与EMT相关的关键基因及其潜在的分子调控机制。方法:PCOS和emt相关基因(EMT-RGs)数据集来源于公共数据库。通过差异表达分析、MR和表达水平评估鉴定了本研究中的关键基因。我们对这些基因进行了富集分析和一系列功能分析,以进一步阐明它们的潜在机制。随后,利用scRNA-seq数据和关键基因的表达验证,鉴定PCOS的关键细胞群,随后进行假时间和细胞通讯分析,以提供更深入的见解。结果:3个关键基因NUCB2[比值比(OR) = 0.8634, 95%可信区间(CI): 0.8145 ~ 0.9152, P]结论:本研究鉴定出3个EMT-RGs: NUCB2、PGF和CRIM1与PCOS风险降低相关,成纤维细胞是PCOS病理的关键细胞群。这为多囊卵巢综合征的研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ovarian Research
Journal of Ovarian Research REPRODUCTIVE BIOLOGY-
CiteScore
6.20
自引率
2.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ. Topical areas include, but are not restricted to: Ovary development, hormone secretion and regulation Follicle growth and ovulation Infertility and Polycystic ovarian syndrome Regulation of pituitary and other biological functions by ovarian hormones Ovarian cancer, its prevention, diagnosis and treatment Drug development and screening Role of stem cells in ovary development and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信