Christopher Käufer, Miloš Stanojlović, Alina Schidlitzki, Jana Bonsberger, Alexander Storch, Franziska Richter
{"title":"Alterations in non-REM sleep and EEG spectra precede REM-sleep deficits in a model of synucleinopathy.","authors":"Christopher Käufer, Miloš Stanojlović, Alina Schidlitzki, Jana Bonsberger, Alexander Storch, Franziska Richter","doi":"10.1177/1877718X241310723","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundSleep disturbances often precede motor symptoms in neurodegenerative diseases like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Neuroinflammation is implicated in PD pathophysiology and may contribute to non-motor symptoms such as sleep disturbances. The Thy1-αSyn mouse model, overexpressing human alpha-synuclein (αSyn), mimics key aspects of PD and DLB, making it valuable for studying related sleep disturbances and neuroinflammatory changes.ObjectiveTo investigate early-stage alterations in sleep architecture, electroencephalographic (EEG) patterns, and neuroinflammation in Thy1-αSyn mice.MethodsWe used telemetric EEG/electromyography (EMG) with video surveillance to compare sleep patterns and EEG spectral power between 2.5- and 4.5-month-old male Thy1-αSyn transgenic mice and wild-type littermates. Neuroinflammation was assessed by examining microglial (Iba1) and astrocytic (GFAP) activation in key sleep-regulating brain regions.ResultsThy1-αSyn mice showed decreased resting wake time and increased non-REM sleep, with altered sleep bout frequency and length, indicating significant sleep architecture changes. Spectral analysis revealed a shift from higher to lower frequency bands, suggesting early neural circuitry disruptions due to αSyn overexpression. Significant microglial activation was observed at 3 months, with astrogliosis progressing by 5 months in key sleep-regulating regions, indicating that neuroinflammation may contribute to the observed sleep disturbances.ConclusionsEarly-stage Thy1-αSyn mice exhibit significant sleep architecture changes, EEG spectral shifts, and neuroinflammatory alterations. These findings suggest that neuroinflammation may play a role in the initial pathophysiological changes in PD and related synucleinopathies. Sleep, EEG, and neuroinflammatory changes could serve as early biomarkers for these diseases.</p>","PeriodicalId":16660,"journal":{"name":"Journal of Parkinson's disease","volume":" ","pages":"311-328"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parkinson's disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1877718X241310723","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundSleep disturbances often precede motor symptoms in neurodegenerative diseases like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Neuroinflammation is implicated in PD pathophysiology and may contribute to non-motor symptoms such as sleep disturbances. The Thy1-αSyn mouse model, overexpressing human alpha-synuclein (αSyn), mimics key aspects of PD and DLB, making it valuable for studying related sleep disturbances and neuroinflammatory changes.ObjectiveTo investigate early-stage alterations in sleep architecture, electroencephalographic (EEG) patterns, and neuroinflammation in Thy1-αSyn mice.MethodsWe used telemetric EEG/electromyography (EMG) with video surveillance to compare sleep patterns and EEG spectral power between 2.5- and 4.5-month-old male Thy1-αSyn transgenic mice and wild-type littermates. Neuroinflammation was assessed by examining microglial (Iba1) and astrocytic (GFAP) activation in key sleep-regulating brain regions.ResultsThy1-αSyn mice showed decreased resting wake time and increased non-REM sleep, with altered sleep bout frequency and length, indicating significant sleep architecture changes. Spectral analysis revealed a shift from higher to lower frequency bands, suggesting early neural circuitry disruptions due to αSyn overexpression. Significant microglial activation was observed at 3 months, with astrogliosis progressing by 5 months in key sleep-regulating regions, indicating that neuroinflammation may contribute to the observed sleep disturbances.ConclusionsEarly-stage Thy1-αSyn mice exhibit significant sleep architecture changes, EEG spectral shifts, and neuroinflammatory alterations. These findings suggest that neuroinflammation may play a role in the initial pathophysiological changes in PD and related synucleinopathies. Sleep, EEG, and neuroinflammatory changes could serve as early biomarkers for these diseases.
期刊介绍:
The Journal of Parkinson''s Disease (JPD) publishes original research in basic science, translational research and clinical medicine in Parkinson’s disease in cooperation with the Journal of Alzheimer''s Disease. It features a first class Editorial Board and provides rigorous peer review and rapid online publication.