S Nayak, P K Roy, S Ghorai, A M Padhan, P Svedlindh, P Murugavel
{"title":"Effect of thermally-induced cationic redistribution on the structural and magnetic properties of Cu-substituted zinc ferrite.","authors":"S Nayak, P K Roy, S Ghorai, A M Padhan, P Svedlindh, P Murugavel","doi":"10.1088/1361-648X/adb824","DOIUrl":null,"url":null,"abstract":"<p><p>Cationic redistribution in spinel ferrite systems greatly influences the magnetic ordering and the associated phenomena. Here, the effect of the synthesis condition on the cationic redistribution and its correlation with the magnetic properties were explored in the Cu2+substituted ZnFe<sub>2</sub>O<sub>4</sub>spinel ferrite. X-ray photoelectron spectroscopy and X-ray diffraction studies reveal that the variation of sintering temperature redistributes the cations between tetrahedral and octahedral sublattices. Results from low field dc-magnetic susceptibility measurements show that the susceptibility increases with decreasing sintering temperature of the sample. Furthermore, the ac-susceptibility results suggest that the sample sintered at 1048 K (1148 K) exhibits spin-glass behavior with a glass transition temperature of ~ 49.2 K (47.1 K) and a cluster-glass behavior at a higher temperature of ~ 317 K (330 K), characteristics that are absent in the sample sintered at 1248 K. The sample annealed at 1048 K exhibits a magnetocaloric effect with a maximum isothermal entropy change of ~ 1.21 J-kg<sup>-1</sup>-K<sup>-1</sup>at μ<sub>0</sub><i>H</i>=5 T.
.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb824","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Cationic redistribution in spinel ferrite systems greatly influences the magnetic ordering and the associated phenomena. Here, the effect of the synthesis condition on the cationic redistribution and its correlation with the magnetic properties were explored in the Cu2+substituted ZnFe2O4spinel ferrite. X-ray photoelectron spectroscopy and X-ray diffraction studies reveal that the variation of sintering temperature redistributes the cations between tetrahedral and octahedral sublattices. Results from low field dc-magnetic susceptibility measurements show that the susceptibility increases with decreasing sintering temperature of the sample. Furthermore, the ac-susceptibility results suggest that the sample sintered at 1048 K (1148 K) exhibits spin-glass behavior with a glass transition temperature of ~ 49.2 K (47.1 K) and a cluster-glass behavior at a higher temperature of ~ 317 K (330 K), characteristics that are absent in the sample sintered at 1248 K. The sample annealed at 1048 K exhibits a magnetocaloric effect with a maximum isothermal entropy change of ~ 1.21 J-kg-1-K-1at μ0H=5 T.
.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.