Diverse roles of ethylene in maize growth and development and its importance in shaping plant architecture.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Alejandro Aragón-Raygoza, Josh Strable
{"title":"Diverse roles of ethylene in maize growth and development and its importance in shaping plant architecture.","authors":"Alejandro Aragón-Raygoza, Josh Strable","doi":"10.1093/jxb/eraf062","DOIUrl":null,"url":null,"abstract":"<p><p>The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize with an emphasis on ethylene's role in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize with an emphasis on ethylene's role in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信