The zinc finger protein ZFP36L2 inhibits flavivirus infection via the 5'-3' XRN1-mediated RNA decay pathway in the replication complexes.

IF 9 2区 医学 Q1 CELL BIOLOGY
Ren-Jye Lin, Li-Hsiung Lin, Zih-Ping Chen, Bing-Cheng Liu, Pin-Chen Ko, Ching-Len Liao
{"title":"The zinc finger protein ZFP36L2 inhibits flavivirus infection via the 5'-3' XRN1-mediated RNA decay pathway in the replication complexes.","authors":"Ren-Jye Lin, Li-Hsiung Lin, Zih-Ping Chen, Bing-Cheng Liu, Pin-Chen Ko, Ching-Len Liao","doi":"10.1186/s12929-025-01122-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The zinc finger protein 36-like (ZFP36L) family is a CCCH-type group consisting of RNA-binding proteins, i.e., ZFP36L1 and ZFP36L2, which regulate cellular mRNA through the RNA decay pathway. ZFP36L1 combats flavivirus infections through the 5'-3' XRN1 and 3'-5' RNA exosome decay pathways. The present study clarified the role of human ZFP36L2 in the defense response of the host against flavivirus infection.</p><p><strong>Methods: </strong>Cell lines with overexpression or knockdown of ZFP36L2 were established using lentiviral vectors carrying genes for overexpression and short-hairpin RNA targeting specific genes, respectively. A plaque assay was employed to determine the viral titer. Immunofluorescence and real-time quantitative polymerase chain reaction were used to measure the viral RNA levels. The in vitro-transcribed RNA transcript derived from a replication-dead Japanese encephalitis virus (JEV) replicon containing the renilla luciferase reporter gene (J-R2A-NS5mt) was used to assess the stability of the flavivirus RNA. An RNA immunoprecipitation assay was used to detect the protein-RNA binding ability. Confocal microscopic images were captured to analyze protein colocalization.</p><p><strong>Results: </strong>ZFP36L2 served as an innate host defender against JEV and dengue virus. ZFP36L2 inhibited flavivirus infection solely through the 5'-3' XRN1 RNA decay pathway, whereas ZFP36L1 inhibited JEV infection via the 5'-3' XRN1 and 3'-5' RNA exosome RNA decay pathways. The direct binding between viral RNA and ZFP36L2 via its CCCH-type zinc finger motifs facilitated the degradation of flavivirus RNA mediated by 5'-3' XRN1. Furthermore, ZFP36L2 was localized in processing bodies (PBs), which participate in the 5'-3' XRN1-mediated RNA decay pathway. Nonetheless, the disruption of PBs did not affect the antiviral activity of ZFP36L2, suggesting that its localization is not essential for the function of the protein. Interestingly, the colocalization of ZFP36L2 and XRN1 with viral RNA and NS3 revealed that the antiviral activity of ZFP36L2 occurred within the replication complexes (RCs).</p><p><strong>Conclusions: </strong>In summary, ZFP36L2 bound to and degraded viral RNA through the XRN1-mediated RNA decay pathway in the RCs, thereby inhibiting flavivirus replication. These findings provide valuable insights into the diverse antiviral mechanisms of the ZFP36-like family of proteins in the innate immune response against flavivirus infection.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"27"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01122-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The zinc finger protein 36-like (ZFP36L) family is a CCCH-type group consisting of RNA-binding proteins, i.e., ZFP36L1 and ZFP36L2, which regulate cellular mRNA through the RNA decay pathway. ZFP36L1 combats flavivirus infections through the 5'-3' XRN1 and 3'-5' RNA exosome decay pathways. The present study clarified the role of human ZFP36L2 in the defense response of the host against flavivirus infection.

Methods: Cell lines with overexpression or knockdown of ZFP36L2 were established using lentiviral vectors carrying genes for overexpression and short-hairpin RNA targeting specific genes, respectively. A plaque assay was employed to determine the viral titer. Immunofluorescence and real-time quantitative polymerase chain reaction were used to measure the viral RNA levels. The in vitro-transcribed RNA transcript derived from a replication-dead Japanese encephalitis virus (JEV) replicon containing the renilla luciferase reporter gene (J-R2A-NS5mt) was used to assess the stability of the flavivirus RNA. An RNA immunoprecipitation assay was used to detect the protein-RNA binding ability. Confocal microscopic images were captured to analyze protein colocalization.

Results: ZFP36L2 served as an innate host defender against JEV and dengue virus. ZFP36L2 inhibited flavivirus infection solely through the 5'-3' XRN1 RNA decay pathway, whereas ZFP36L1 inhibited JEV infection via the 5'-3' XRN1 and 3'-5' RNA exosome RNA decay pathways. The direct binding between viral RNA and ZFP36L2 via its CCCH-type zinc finger motifs facilitated the degradation of flavivirus RNA mediated by 5'-3' XRN1. Furthermore, ZFP36L2 was localized in processing bodies (PBs), which participate in the 5'-3' XRN1-mediated RNA decay pathway. Nonetheless, the disruption of PBs did not affect the antiviral activity of ZFP36L2, suggesting that its localization is not essential for the function of the protein. Interestingly, the colocalization of ZFP36L2 and XRN1 with viral RNA and NS3 revealed that the antiviral activity of ZFP36L2 occurred within the replication complexes (RCs).

Conclusions: In summary, ZFP36L2 bound to and degraded viral RNA through the XRN1-mediated RNA decay pathway in the RCs, thereby inhibiting flavivirus replication. These findings provide valuable insights into the diverse antiviral mechanisms of the ZFP36-like family of proteins in the innate immune response against flavivirus infection.

锌指蛋白ZFP36L2在复制复合体中通过5'-3' xrn1介导的RNA衰变途径抑制黄病毒感染。
背景:锌指蛋白36样(ZFP36L)家族是一个由RNA结合蛋白ZFP36L1和ZFP36L2组成的ccch型蛋白群,通过RNA衰变途径调控细胞mRNA。ZFP36L1通过5'-3' XRN1和3'-5' RNA外泌体衰变途径对抗黄病毒感染。本研究阐明了人ZFP36L2在宿主对黄病毒感染的防御反应中的作用。方法:采用慢病毒载体分别携带过表达基因和靶向特定基因的短发夹RNA,建立过表达或低表达ZFP36L2细胞系。采用空斑测定法测定病毒滴度。采用免疫荧光和实时定量聚合酶链反应检测病毒RNA水平。采用含有肾荧光素酶报告基因(J-R2A-NS5mt)的复制死亡日本脑炎病毒(JEV)复制子的体外转录RNA转录物来评估黄病毒RNA的稳定性。采用RNA免疫沉淀法检测蛋白-RNA结合能力。共聚焦显微镜图像被捕获来分析蛋白质共定位。结果:ZFP36L2具有抗乙脑病毒和登革热病毒的先天宿主防御作用。ZFP36L2仅通过5'-3' XRN1 RNA衰变途径抑制黄病毒感染,而ZFP36L1通过5'-3' XRN1和3'-5' RNA外泌体RNA衰变途径抑制乙脑病毒感染。病毒RNA通过其ccch型锌指基序与ZFP36L2直接结合,促进了5'-3' XRN1介导的黄病毒RNA的降解。此外,ZFP36L2定位于参与5'-3' xrn1介导的RNA衰变途径的加工体(PBs)中。尽管如此,PBs的破坏并未影响ZFP36L2的抗病毒活性,这表明它的定位对蛋白质的功能不是必需的。有趣的是,ZFP36L2和XRN1与病毒RNA和NS3共定位表明,ZFP36L2的抗病毒活性发生在复制复合体(RCs)内。结论:综上所述,ZFP36L2在RCs中通过xrn1介导的RNA衰变途径结合并降解病毒RNA,从而抑制黄病毒复制。这些发现为了解zfp36样蛋白家族在抗黄病毒感染的先天免疫应答中的多种抗病毒机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信