How do feeding biomechanics, extreme predator-prey size ratios and the rare enemy effect determine energetics and ecology at the largest scale?

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-02-15 Epub Date: 2025-02-20 DOI:10.1242/jeb.247875
Jeremy A Goldbogen, David E Cade
{"title":"How do feeding biomechanics, extreme predator-prey size ratios and the rare enemy effect determine energetics and ecology at the largest scale?","authors":"Jeremy A Goldbogen, David E Cade","doi":"10.1242/jeb.247875","DOIUrl":null,"url":null,"abstract":"<p><p>The most recent and largest radiation of marine filter feeders are edentulous baleen whales (Mysticeti) that use keratinized racks of fringed and matted baleen to filter zooplankton (e.g. krill) or small schooling fish (e.g. anchovies, sardines). Rorqual whales (Balaeopteridae) exhibit the greatest size range among mysticetes and employ a unique lunge-feeding mechanism whereby engulfment and filtration are temporally decoupled. As a result, lunge feeding confers the ability to rapidly engulf large prey aggregations, such as krill or schooling fish, followed by a prolonged filter phase. In contrast, engulfment and filtration occur at the same time in all other gigantic filter feeders (e.g. basking sharks, whale sharks) at slow speeds. Although lunges in rorquals occur at higher speeds, the extreme predator-prey ratios at play suggest that whales may not be able to overcome the escape abilities of scattering prey. These types of prey have been engaged in evolutionary arms races with smaller predators for tens of millions of years prior to the rise of today's ocean giants. Extant rorqual whales evolved gigantism only in the last few million years; thus, they represent rare enemies of small prey such that flight responses may be delayed until escape is less likely. Data from whale-borne movement-sensing tags, looming stimulus experiments and stomach contents suggest a potential trade-off in capture efficiency for different prey types (e.g. fish versus krill) with increasing whale body size. Such constraints likely shaped the ecology and energetics of foraging at the largest scales.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247875","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The most recent and largest radiation of marine filter feeders are edentulous baleen whales (Mysticeti) that use keratinized racks of fringed and matted baleen to filter zooplankton (e.g. krill) or small schooling fish (e.g. anchovies, sardines). Rorqual whales (Balaeopteridae) exhibit the greatest size range among mysticetes and employ a unique lunge-feeding mechanism whereby engulfment and filtration are temporally decoupled. As a result, lunge feeding confers the ability to rapidly engulf large prey aggregations, such as krill or schooling fish, followed by a prolonged filter phase. In contrast, engulfment and filtration occur at the same time in all other gigantic filter feeders (e.g. basking sharks, whale sharks) at slow speeds. Although lunges in rorquals occur at higher speeds, the extreme predator-prey ratios at play suggest that whales may not be able to overcome the escape abilities of scattering prey. These types of prey have been engaged in evolutionary arms races with smaller predators for tens of millions of years prior to the rise of today's ocean giants. Extant rorqual whales evolved gigantism only in the last few million years; thus, they represent rare enemies of small prey such that flight responses may be delayed until escape is less likely. Data from whale-borne movement-sensing tags, looming stimulus experiments and stomach contents suggest a potential trade-off in capture efficiency for different prey types (e.g. fish versus krill) with increasing whale body size. Such constraints likely shaped the ecology and energetics of foraging at the largest scales.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信