Shuwen Han, Paul J Van den Brink, Steven A J Declerck
{"title":"Adapting to an increasingly stressful environment: Experimental evidence for 'micro-evolutionary priming'.","authors":"Shuwen Han, Paul J Van den Brink, Steven A J Declerck","doi":"10.1111/1365-2656.70012","DOIUrl":null,"url":null,"abstract":"<p><p>In many natural systems, animal populations are exposed to increasing levels of stress. Stress levels tend to fluctuate, and long-term increases in average stress levels are often accompanied by greater amplitudes of such fluctuations. Micro-evolutionary adaptation may allow populations to cope with gradually increasing stress levels but may not prevent their extirpation during acute stress events unless adaptation to low stress levels also increases their tolerance to acute stress. We tested this idea, here called 'micro-evolutionary priming', by exposing populations of the monogonont rotifer species Brachionus calyciflorus to four levels of copper stress (control, low, intermediate and high) during a multigenerational selection experiment. Subsequently, in a common garden experiment, we exposed randomly selected subsets of genotypes (clones) of each of these populations to low, intermediate and high copper levels and assessed their population growth performance across multiple generations. Compared to populations with an exposure history to copper, genotypes of control populations suffered strong growth reductions when exposed to intermediate and high levels of copper, mainly as a result of high mortality rates. Remarkably, when exposed to low copper levels, fitness differences between genotypes of control populations and populations adapted to these low levels were very small, whereas the latter strongly outperformed the former at intermediate and high copper levels. These results highlight the potentially strong but hitherto largely ignored impact of micro-evolutionary priming on the performance of populations in a changing environment. We discuss the potential consequences of micro-evolutionary priming for the persistence of populations and the spatial eco-evolutionary dynamics of metapopulations.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.70012","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In many natural systems, animal populations are exposed to increasing levels of stress. Stress levels tend to fluctuate, and long-term increases in average stress levels are often accompanied by greater amplitudes of such fluctuations. Micro-evolutionary adaptation may allow populations to cope with gradually increasing stress levels but may not prevent their extirpation during acute stress events unless adaptation to low stress levels also increases their tolerance to acute stress. We tested this idea, here called 'micro-evolutionary priming', by exposing populations of the monogonont rotifer species Brachionus calyciflorus to four levels of copper stress (control, low, intermediate and high) during a multigenerational selection experiment. Subsequently, in a common garden experiment, we exposed randomly selected subsets of genotypes (clones) of each of these populations to low, intermediate and high copper levels and assessed their population growth performance across multiple generations. Compared to populations with an exposure history to copper, genotypes of control populations suffered strong growth reductions when exposed to intermediate and high levels of copper, mainly as a result of high mortality rates. Remarkably, when exposed to low copper levels, fitness differences between genotypes of control populations and populations adapted to these low levels were very small, whereas the latter strongly outperformed the former at intermediate and high copper levels. These results highlight the potentially strong but hitherto largely ignored impact of micro-evolutionary priming on the performance of populations in a changing environment. We discuss the potential consequences of micro-evolutionary priming for the persistence of populations and the spatial eco-evolutionary dynamics of metapopulations.
期刊介绍:
Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.