Two amino-substituted diphenyl fumaramide derivatives inhibit the virulence regulated by quorum sensing system of Pseudomonas aeruginosa.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qiman Ran, Yang Yuan, Yi Wu, Xiongyao Gan, Junfeng Deng, Yiwen Chu, Qinggang Ji, Xinrong Wang, Kelei Zhao
{"title":"Two amino-substituted diphenyl fumaramide derivatives inhibit the virulence regulated by quorum sensing system of Pseudomonas aeruginosa.","authors":"Qiman Ran, Yang Yuan, Yi Wu, Xiongyao Gan, Junfeng Deng, Yiwen Chu, Qinggang Ji, Xinrong Wang, Kelei Zhao","doi":"10.1093/jambio/lxaf038","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Pseudomonas aeruginosa employs the quorum sensing (QS) system, a sophisticated cell-to-cell communication mechanism, to modulate the synthesis and secretion of a range of virulence factors, which contribute to the establishment of acute or chronic infections in hosts. This study seeks to attenuate the virulence of P. aeruginosa by inhibiting the QS system, thereby reducing its pathogenicity as a promising alternative to traditional antibiotics.</p><p><strong>Methods and results: </strong>Two compounds with an amino-substituted diphenyl fumaramide core, N1-(4-bromophenyl)-N4-(4'-oxo-3',4'-dihydro-1'H-spiro [cyclopentane-1,2'-quinazolin]-6'-yl) fumaramide (10D) and N1-(3-chloro-4-fluorophenyl)-N4-(4-oxo-3,4,4',5'-tetrahydro-1H,2'H-spiro [quinazoline-2,3'-thiophen]-6-yl) fumaramide (12A), were identified through in-silico screening. The QS inhibitory potential of both compounds was explored in vitro and in vivo. In in vitro experiments, neither compound exhibited bactericidal effects but significantly inhibited the production of QS-regulated extracellular protease and pyocyanin. Quantitative PCR analysis revealed that QS-activated genes and downstream virulence genes were transcriptionally suppressed by 10D or 12A. Molecular docking and molecular dynamics simulations predicted stable interactions between these compounds and the key QS regulators LasR and PqsR. When combined with polymyxin B, kanamycin, and levofloxacin, 10D and 12A exhibited synergistic antibacterial activity. Furthermore, compounds 10D and 12A significantly improved the survival of mice challenged with P. aeruginosa and effectively reduced the bacterial load in the lungs.</p><p><strong>Conclusion: </strong>This study indicates that 10D and 12A possess considerable QS inhibitory potential, effectively attenuating the pathogenicity of P. aeruginosa. Moreover, the study offers structural insights and methodological guidance for the advancement of anti-virulence drug development.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Pseudomonas aeruginosa employs the quorum sensing (QS) system, a sophisticated cell-to-cell communication mechanism, to modulate the synthesis and secretion of a range of virulence factors, which contribute to the establishment of acute or chronic infections in hosts. This study seeks to attenuate the virulence of P. aeruginosa by inhibiting the QS system, thereby reducing its pathogenicity as a promising alternative to traditional antibiotics.

Methods and results: Two compounds with an amino-substituted diphenyl fumaramide core, N1-(4-bromophenyl)-N4-(4'-oxo-3',4'-dihydro-1'H-spiro [cyclopentane-1,2'-quinazolin]-6'-yl) fumaramide (10D) and N1-(3-chloro-4-fluorophenyl)-N4-(4-oxo-3,4,4',5'-tetrahydro-1H,2'H-spiro [quinazoline-2,3'-thiophen]-6-yl) fumaramide (12A), were identified through in-silico screening. The QS inhibitory potential of both compounds was explored in vitro and in vivo. In in vitro experiments, neither compound exhibited bactericidal effects but significantly inhibited the production of QS-regulated extracellular protease and pyocyanin. Quantitative PCR analysis revealed that QS-activated genes and downstream virulence genes were transcriptionally suppressed by 10D or 12A. Molecular docking and molecular dynamics simulations predicted stable interactions between these compounds and the key QS regulators LasR and PqsR. When combined with polymyxin B, kanamycin, and levofloxacin, 10D and 12A exhibited synergistic antibacterial activity. Furthermore, compounds 10D and 12A significantly improved the survival of mice challenged with P. aeruginosa and effectively reduced the bacterial load in the lungs.

Conclusion: This study indicates that 10D and 12A possess considerable QS inhibitory potential, effectively attenuating the pathogenicity of P. aeruginosa. Moreover, the study offers structural insights and methodological guidance for the advancement of anti-virulence drug development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信