Qiman Ran, Yang Yuan, Yi Wu, Xiongyao Gan, Junfeng Deng, Yiwen Chu, Qinggang Ji, Xinrong Wang, Kelei Zhao
{"title":"Two amino-substituted diphenyl fumaramide derivatives inhibit the virulence regulated by quorum sensing system of Pseudomonas aeruginosa.","authors":"Qiman Ran, Yang Yuan, Yi Wu, Xiongyao Gan, Junfeng Deng, Yiwen Chu, Qinggang Ji, Xinrong Wang, Kelei Zhao","doi":"10.1093/jambio/lxaf038","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Pseudomonas aeruginosa employs the quorum sensing (QS) system, a sophisticated cell-to-cell communication mechanism, to modulate the synthesis and secretion of a range of virulence factors, which contribute to the establishment of acute or chronic infections in hosts. This study seeks to attenuate the virulence of P. aeruginosa by inhibiting the QS system, thereby reducing its pathogenicity as a promising alternative to traditional antibiotics.</p><p><strong>Methods and results: </strong>Two compounds with an amino-substituted diphenyl fumaramide core, N1-(4-bromophenyl)-N4-(4'-oxo-3',4'-dihydro-1'H-spiro [cyclopentane-1,2'-quinazolin]-6'-yl) fumaramide (10D) and N1-(3-chloro-4-fluorophenyl)-N4-(4-oxo-3,4,4',5'-tetrahydro-1H,2'H-spiro [quinazoline-2,3'-thiophen]-6-yl) fumaramide (12A), were identified through in-silico screening. The QS inhibitory potential of both compounds was explored in vitro and in vivo. In in vitro experiments, neither compound exhibited bactericidal effects but significantly inhibited the production of QS-regulated extracellular protease and pyocyanin. Quantitative PCR analysis revealed that QS-activated genes and downstream virulence genes were transcriptionally suppressed by 10D or 12A. Molecular docking and molecular dynamics simulations predicted stable interactions between these compounds and the key QS regulators LasR and PqsR. When combined with polymyxin B, kanamycin, and levofloxacin, 10D and 12A exhibited synergistic antibacterial activity. Furthermore, compounds 10D and 12A significantly improved the survival of mice challenged with P. aeruginosa and effectively reduced the bacterial load in the lungs.</p><p><strong>Conclusion: </strong>This study indicates that 10D and 12A possess considerable QS inhibitory potential, effectively attenuating the pathogenicity of P. aeruginosa. Moreover, the study offers structural insights and methodological guidance for the advancement of anti-virulence drug development.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Pseudomonas aeruginosa employs the quorum sensing (QS) system, a sophisticated cell-to-cell communication mechanism, to modulate the synthesis and secretion of a range of virulence factors, which contribute to the establishment of acute or chronic infections in hosts. This study seeks to attenuate the virulence of P. aeruginosa by inhibiting the QS system, thereby reducing its pathogenicity as a promising alternative to traditional antibiotics.
Methods and results: Two compounds with an amino-substituted diphenyl fumaramide core, N1-(4-bromophenyl)-N4-(4'-oxo-3',4'-dihydro-1'H-spiro [cyclopentane-1,2'-quinazolin]-6'-yl) fumaramide (10D) and N1-(3-chloro-4-fluorophenyl)-N4-(4-oxo-3,4,4',5'-tetrahydro-1H,2'H-spiro [quinazoline-2,3'-thiophen]-6-yl) fumaramide (12A), were identified through in-silico screening. The QS inhibitory potential of both compounds was explored in vitro and in vivo. In in vitro experiments, neither compound exhibited bactericidal effects but significantly inhibited the production of QS-regulated extracellular protease and pyocyanin. Quantitative PCR analysis revealed that QS-activated genes and downstream virulence genes were transcriptionally suppressed by 10D or 12A. Molecular docking and molecular dynamics simulations predicted stable interactions between these compounds and the key QS regulators LasR and PqsR. When combined with polymyxin B, kanamycin, and levofloxacin, 10D and 12A exhibited synergistic antibacterial activity. Furthermore, compounds 10D and 12A significantly improved the survival of mice challenged with P. aeruginosa and effectively reduced the bacterial load in the lungs.
Conclusion: This study indicates that 10D and 12A possess considerable QS inhibitory potential, effectively attenuating the pathogenicity of P. aeruginosa. Moreover, the study offers structural insights and methodological guidance for the advancement of anti-virulence drug development.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.