Genetic insights into avian influenza resistance in Jeju Island chickens: the roles of Mx1 and oligoadenylate synthetase-like single nucleotide polymorphisms.

IF 2.7 3区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Journal of Animal Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-31 DOI:10.5187/jast.2025.e10
Young-Won Kim, Seohyun Jeong, Ju-Hee Yang, Dongseob Tark, Woo Hyun Kim, Hyoung-Seok Yang, Seong-Hwan Mun, Sung Hyun Kang, Eun-A Ko, Jae-Hong Ko
{"title":"Genetic insights into avian influenza resistance in Jeju Island chickens: the roles of Mx1 and oligoadenylate synthetase-like single nucleotide polymorphisms.","authors":"Young-Won Kim, Seohyun Jeong, Ju-Hee Yang, Dongseob Tark, Woo Hyun Kim, Hyoung-Seok Yang, Seong-Hwan Mun, Sung Hyun Kang, Eun-A Ko, Jae-Hong Ko","doi":"10.5187/jast.2025.e10","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A virus (FLUAV) causes serious diseases in both poultry and humans. Various host proteins, including Mx1, are considered candidates for avian influenza (AI) resistance. After infecting Jeju Native chicken embryo fibroblasts (CEFs) with three types of AI viruses, we performed gene expression profiling, identified single nucleotide polymorphisms (SNPs) through RNA-sequencing, and confirmed phenotypes showing antiviral activity <i>in vitro</i>. Highly pathogenic AI viruses upregulated <i>FGF2, LYN</i>, and <i>FLT4</i> and downregulated <i>HGF</i>, <i>ANGPT1</i>, and <i>ROR2</i>, while a low pathogenicity AI upregulated <i>PARK7</i>, <i>RACK1</i>, and <i>DTX3L</i> and downregulated <i>SIRT1</i>, <i>LRRK2</i>, and <i>WAC</i>. However, no virus affected <i>Mx1</i> expression. Although SNPs in <i>Mx1</i> could not discriminate antiviral activity alone, the only CEF resistant to H5N6, strain AN4, contained the Mx1 631 R/R genotype and strongly expressed an oligoadenylate synthetase-like (OASL) variant with a unique SNP: c.G880A (p.E294K). Using transfected cell lines, H5N6-infected cells expressing <i>OASL</i> with the c.G880A SNP showed minimal cytopathic effects and the lowest <i>M</i> gene expression. This study confirms that Jeju Native chickens with specific SNP combinations in both <i>Mx1</i> and <i>OASL</i> showed H5N6 resistance and demonstrates the interplay of genetic factors in host-pathogen dynamics, suggesting a need for integrated analyses of multiple resistance genes to inform AI prevention strategies.</p>","PeriodicalId":14923,"journal":{"name":"Journal of Animal Science and Technology","volume":"67 1","pages":"69-85"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5187/jast.2025.e10","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A virus (FLUAV) causes serious diseases in both poultry and humans. Various host proteins, including Mx1, are considered candidates for avian influenza (AI) resistance. After infecting Jeju Native chicken embryo fibroblasts (CEFs) with three types of AI viruses, we performed gene expression profiling, identified single nucleotide polymorphisms (SNPs) through RNA-sequencing, and confirmed phenotypes showing antiviral activity in vitro. Highly pathogenic AI viruses upregulated FGF2, LYN, and FLT4 and downregulated HGF, ANGPT1, and ROR2, while a low pathogenicity AI upregulated PARK7, RACK1, and DTX3L and downregulated SIRT1, LRRK2, and WAC. However, no virus affected Mx1 expression. Although SNPs in Mx1 could not discriminate antiviral activity alone, the only CEF resistant to H5N6, strain AN4, contained the Mx1 631 R/R genotype and strongly expressed an oligoadenylate synthetase-like (OASL) variant with a unique SNP: c.G880A (p.E294K). Using transfected cell lines, H5N6-infected cells expressing OASL with the c.G880A SNP showed minimal cytopathic effects and the lowest M gene expression. This study confirms that Jeju Native chickens with specific SNP combinations in both Mx1 and OASL showed H5N6 resistance and demonstrates the interplay of genetic factors in host-pathogen dynamics, suggesting a need for integrated analyses of multiple resistance genes to inform AI prevention strategies.

济州岛鸡禽流感抗性的遗传洞察:Mx1和寡聚腺苷酸合成酶样单核苷酸多态性的作用。
甲型流感病毒(FLUAV)在家禽和人类中引起严重疾病。包括Mx1在内的各种宿主蛋白被认为是禽流感(AI)抗性的候选物。将三种AI病毒感染济州土鸡胚成纤维细胞(CEFs)后,进行基因表达谱分析,通过rna测序鉴定单核苷酸多态性(snp),并在体外证实具有抗病毒活性的表型。高致病性AI病毒上调FGF2、LYN和FLT4,下调HGF、ANGPT1和ROR2,而低致病性AI病毒上调PARK7、RACK1和DTX3L,下调SIRT1、LRRK2和WAC。然而,没有病毒影响Mx1的表达。虽然Mx1的SNP不能单独区分抗病毒活性,但唯一对H5N6具有抗性的CEF菌株AN4含有Mx1 631 R/R基因型,并强烈表达具有独特SNP的低聚腺苷酸合成酶样(OASL)变体:c.G880A (p.E294K)。在转染细胞系中,表达带有c.G880A SNP的OASL的h5n6感染细胞表现出最小的细胞病变效应和最低的M基因表达。本研究证实,具有Mx1和OASL特异性SNP组合的济州土鸡表现出对H5N6的抗性,并证明了遗传因素在宿主-病原体动力学中的相互作用,表明需要对多种抗性基因进行综合分析,为AI预防策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Animal Science and Technology
Journal of Animal Science and Technology Agricultural and Biological Sciences-Food Science
CiteScore
4.50
自引率
8.70%
发文量
96
审稿时长
7 weeks
期刊介绍: Journal of Animal Science and Technology (J. Anim. Sci. Technol. or JAST) is a peer-reviewed, open access journal publishing original research, review articles and notes in all fields of animal science. Topics covered by the journal include: genetics and breeding, physiology, nutrition of monogastric animals, nutrition of ruminants, animal products (milk, meat, eggs and their by-products) and their processing, grasslands and roughages, livestock environment, animal biotechnology, animal behavior and welfare. Articles generally report research involving beef cattle, dairy cattle, pigs, companion animals, goats, horses, and sheep. However, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will also be considered for publication. The Journal of Animal Science and Technology (J. Anim. Technol. or JAST) has been the official journal of The Korean Society of Animal Science and Technology (KSAST) since 2000, formerly known as The Korean Journal of Animal Sciences (launched in 1956).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信