Children's health impact in a smelter site area in China: modeling approaches for the identification and ranking of the most relevant lead exposure routes.
Elisa Giubilato, Manola Menegozzo, Peizhong Li, Hongguang Cheng, Antonio Marcomini, Xiaoli Duan, Andrea Critto, Chunye Lin
{"title":"Children's health impact in a smelter site area in China: modeling approaches for the identification and ranking of the most relevant lead exposure routes.","authors":"Elisa Giubilato, Manola Menegozzo, Peizhong Li, Hongguang Cheng, Antonio Marcomini, Xiaoli Duan, Andrea Critto, Chunye Lin","doi":"10.1093/inteam/vjae033","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated blood lead levels (BLLs) in children still represent a major public health problem worldwide. In China, children's lead (Pb) exposure assessment constitutes a priority issue for research, also due to the scarce availability of human biomonitoring data and limited detailed exposure assessments outside urban areas. This work aims to analyze children's health impact by exploiting exposure modeling approaches to identify the most relevant Pb sources and exposure routes for 0-7-year-old children in a historical Pb-Zn smelter site in Yunnan province (southwestern China), characterized by heavy environmental pollution conditions. For this purpose, two exposure modeling tools, the Integrated Exposure Uptake Bio-Kinetic and MERLIN-Expo, were applied, using measured Pb concentrations in environmental media and food items from a local field campaign as input data. Simulated BLLs, including probabilistic estimates, were obtained and verified against real biomonitoring data from the literature. Model results for the simulated exposure scenario indicate significantly high children's BLLs (>10 µg/dl), which reflect the elevated Pb concentrations measured in environmental matrices and are mostly in agreement with previous biomonitoring data from the region. Moreover, soil and dust ingestion resulted to be the dominant exposure pathway, contributing more than 70% to the overall Pb exposure in children in all investigated scenarios. This work showed how tools for internal exposure modeling can contribute to Pb exposure assessment as complementary tools to demanding and invasive biomonitoring studies and can help identify priority exposure routes for improving risk management.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":"21 2","pages":"442-454"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjae033","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Elevated blood lead levels (BLLs) in children still represent a major public health problem worldwide. In China, children's lead (Pb) exposure assessment constitutes a priority issue for research, also due to the scarce availability of human biomonitoring data and limited detailed exposure assessments outside urban areas. This work aims to analyze children's health impact by exploiting exposure modeling approaches to identify the most relevant Pb sources and exposure routes for 0-7-year-old children in a historical Pb-Zn smelter site in Yunnan province (southwestern China), characterized by heavy environmental pollution conditions. For this purpose, two exposure modeling tools, the Integrated Exposure Uptake Bio-Kinetic and MERLIN-Expo, were applied, using measured Pb concentrations in environmental media and food items from a local field campaign as input data. Simulated BLLs, including probabilistic estimates, were obtained and verified against real biomonitoring data from the literature. Model results for the simulated exposure scenario indicate significantly high children's BLLs (>10 µg/dl), which reflect the elevated Pb concentrations measured in environmental matrices and are mostly in agreement with previous biomonitoring data from the region. Moreover, soil and dust ingestion resulted to be the dominant exposure pathway, contributing more than 70% to the overall Pb exposure in children in all investigated scenarios. This work showed how tools for internal exposure modeling can contribute to Pb exposure assessment as complementary tools to demanding and invasive biomonitoring studies and can help identify priority exposure routes for improving risk management.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.