{"title":"KLF2 expression in IgG plasma cells at their induction site regulates the migration program.","authors":"Wataru Ise, Takuya Koike, Nozomi Shimada, Hiromi Yamamoto, Yuki Tai, Taiichiro Shirai, Ryoji Kawakami, Mana Kuwabara, Chie Kawai, Kyoko Shida, Takeshi Inoue, Nozomi Hojo, Kenji Ichiyama, Shimon Sakaguchi, Katsuyuki Shiroguchi, Kazuhiro Suzuki, Tomohiro Kurosaki","doi":"10.1084/jem.20241019","DOIUrl":null,"url":null,"abstract":"<p><p>Newly generated plasma cells in secondary lymphoid organs migrate to niches in the bone marrow, wherein they survive as long-lived plasma cells (LLPCs). Although LLPCs have been extensively characterized, it is still unclear what the key determinant(s) are for plasma cell longevity. One model postulates that plasma cell heterogeneity is established at the induction site, thereby instructing their longevity. Here, we found that, among newly generated IgG plasma cells, integrin β7hi marks plasma cells predisposed to home to the bone marrow, whereas integrin β7lo cells remain in secondary lymphoid organs. Mechanistically, this egress-prone fraction had a higher expression of the KLF2 transcription factor, the loss of which resulted in defective egress by downregulating S1PR1 and CD11b. Disruption of plasma cell egress results in defective antibody durability, thereby making mice more susceptible to influenza reinfection. Thus, the migration program of plasma cells established at the induction site plays a critical role in determining antibody durability.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 5","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Newly generated plasma cells in secondary lymphoid organs migrate to niches in the bone marrow, wherein they survive as long-lived plasma cells (LLPCs). Although LLPCs have been extensively characterized, it is still unclear what the key determinant(s) are for plasma cell longevity. One model postulates that plasma cell heterogeneity is established at the induction site, thereby instructing their longevity. Here, we found that, among newly generated IgG plasma cells, integrin β7hi marks plasma cells predisposed to home to the bone marrow, whereas integrin β7lo cells remain in secondary lymphoid organs. Mechanistically, this egress-prone fraction had a higher expression of the KLF2 transcription factor, the loss of which resulted in defective egress by downregulating S1PR1 and CD11b. Disruption of plasma cell egress results in defective antibody durability, thereby making mice more susceptible to influenza reinfection. Thus, the migration program of plasma cells established at the induction site plays a critical role in determining antibody durability.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.