Alanine and glutathione targeting of dopamine- or ibuprofen-coupled polypeptide nanocarriers increases both crossing and protective effects on a blood-brain barrier model.
Mária Mészáros, Thi Ha My Phan, Judit P Vigh, Gergő Porkoláb, Anna Kocsis, Anikó Szecskó, Emese K Páli, Nárcisz M Cser, Tamás F Polgár, Gábor Kecskeméti, Fruzsina R Walter, Jens C Schwamborn, Tamás Janáky, Jeng-Shiung Jan, Szilvia Veszelka, Mária A Deli
{"title":"Alanine and glutathione targeting of dopamine- or ibuprofen-coupled polypeptide nanocarriers increases both crossing and protective effects on a blood-brain barrier model.","authors":"Mária Mészáros, Thi Ha My Phan, Judit P Vigh, Gergő Porkoláb, Anna Kocsis, Anikó Szecskó, Emese K Páli, Nárcisz M Cser, Tamás F Polgár, Gábor Kecskeméti, Fruzsina R Walter, Jens C Schwamborn, Tamás Janáky, Jeng-Shiung Jan, Szilvia Veszelka, Mária A Deli","doi":"10.1186/s12987-025-00623-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeting the blood-brain barrier (BBB) is a key step for effective brain delivery of nanocarriers. We have previously discovered that combinations of BBB nutrient transporter ligands alanine and glutathione (A-GSH), increase the permeability of vesicular and polypeptide nanocarriers containing model cargo across the BBB. Our aim was to investigate dopamine- and ibuprofen-coupled 3-armed poly(L-glutamic acid) nanocarriers targeted by A-GSH for transfer across a novel human co-culture model with induced BBB properties. In addition, the protective effect of ibuprofen containing nanoparticles on cytokine-induced barrier damage was also measured.</p><p><strong>Method: </strong>Drug-coupled nanocarriers were synthetized and characterized by dynamic light scattering and transmission electron microscopy. Cellular effects, uptake, and permeability of the nanoparticles were investigated on a human stem cell-based co-culture BBB model with improved barrier properties induced by a small molecular cocktail. The model was characterized by immunocytochemistry and permeability for marker molecules. Nanocarrier uptake in human brain endothelial cells and midbrain organoids was quantified by spectrofluorometry and visualized by confocal microscopy. The mechanisms of cellular uptake were explored by addition of free targeting ligands, endocytic and metabolic inhibitors, co-localization of nanocarriers with intracellular organs, and surface charge modification of cells. The protective effect of ibuprofen-coupled nanocarriers was investigated against cytokine-induced barrier damage by impedance and permeability measurements.</p><p><strong>Results: </strong>Targeted nanoformulations of both drugs showed elevated cellular uptake in a time-dependent, active manner via endocytic mechanisms. Addition of free ligands inhibited the cellular internalization of targeted nanocarriers suggesting the crucial role of ligands in the uptake process. A higher permeability across the BBB model was measured for targeted nanocarriers. After crossing the BBB, targeted dopamine nanocarriers subsequently entered midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. The ibuprofen-coupled targeted nanocarriers showed protective effects against cytokine-induced barrier damage.</p><p><strong>Conclusion: </strong>BBB-targeted polypeptide nanoparticles coupled to therapeutic molecules were effectively taken up by brain organoids or showing a BBB protective effect indicating potential applications in nervous system pathologies.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"18"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00623-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Targeting the blood-brain barrier (BBB) is a key step for effective brain delivery of nanocarriers. We have previously discovered that combinations of BBB nutrient transporter ligands alanine and glutathione (A-GSH), increase the permeability of vesicular and polypeptide nanocarriers containing model cargo across the BBB. Our aim was to investigate dopamine- and ibuprofen-coupled 3-armed poly(L-glutamic acid) nanocarriers targeted by A-GSH for transfer across a novel human co-culture model with induced BBB properties. In addition, the protective effect of ibuprofen containing nanoparticles on cytokine-induced barrier damage was also measured.
Method: Drug-coupled nanocarriers were synthetized and characterized by dynamic light scattering and transmission electron microscopy. Cellular effects, uptake, and permeability of the nanoparticles were investigated on a human stem cell-based co-culture BBB model with improved barrier properties induced by a small molecular cocktail. The model was characterized by immunocytochemistry and permeability for marker molecules. Nanocarrier uptake in human brain endothelial cells and midbrain organoids was quantified by spectrofluorometry and visualized by confocal microscopy. The mechanisms of cellular uptake were explored by addition of free targeting ligands, endocytic and metabolic inhibitors, co-localization of nanocarriers with intracellular organs, and surface charge modification of cells. The protective effect of ibuprofen-coupled nanocarriers was investigated against cytokine-induced barrier damage by impedance and permeability measurements.
Results: Targeted nanoformulations of both drugs showed elevated cellular uptake in a time-dependent, active manner via endocytic mechanisms. Addition of free ligands inhibited the cellular internalization of targeted nanocarriers suggesting the crucial role of ligands in the uptake process. A higher permeability across the BBB model was measured for targeted nanocarriers. After crossing the BBB, targeted dopamine nanocarriers subsequently entered midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. The ibuprofen-coupled targeted nanocarriers showed protective effects against cytokine-induced barrier damage.
Conclusion: BBB-targeted polypeptide nanoparticles coupled to therapeutic molecules were effectively taken up by brain organoids or showing a BBB protective effect indicating potential applications in nervous system pathologies.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).