Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches.

IF 7.7 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Critical Reviews in Biotechnology Pub Date : 2025-09-01 Epub Date: 2025-02-19 DOI:10.1080/07388551.2025.2455607
Fatima Ceballos Rodriguez-Conde, Sophie Zhu, Duygu Dikicioglu
{"title":"Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches.","authors":"Fatima Ceballos Rodriguez-Conde, Sophie Zhu, Duygu Dikicioglu","doi":"10.1080/07388551.2025.2455607","DOIUrl":null,"url":null,"abstract":"<p><p>Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1249-1267"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2455607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.

利用微生物劳动分工的生物制造:实验室和正式建模方法的回顾。
生物加工工业旨在通过设计增强宿主细胞和代谢能力来满足对产品复杂性日益增长的需求。单一栽培,标准的生物制造主力,通常在满足这些要求的能力方面受到限制,解决方案通常涉及对宿主进行基因改造。合成微生物群落是一种很有前途的替代单一培养,因为它们表现出劳动分工,能够有效地利用资源和途径模块化。这种专业化最大限度地减少了代谢负担,增强了对扰动的鲁棒性,提供了竞争优势。尽管有这种潜力,它们在生物技术或生物加工应用中的利用仍然有限。最近出现的创新社区设计工具和策略,特别是那些利用劳动分工的工具和策略,有望改变这种前景。了解控制天然微生物群落的微生物相互作用可用于识别互补伙伴,为合成群落设计提供信息。因此,我们特别考虑在合成微生物群落中进行工程分工,作为加速该领域进展的可行解决方案。这篇综述介绍了目前对微生物相互作用如何使劳动分工的理解,以及如何利用这些信息来设计合成微生物群落来执行个体生物无法完成的任务。然后,我们评估了实验室和正式的建模方法,这些方法专门用于:阐明微生物群落生理学,指导实验设计,提高我们对复杂群落相互作用的理解,帮助合成群落设计。通过综合这些见解,我们的目标是提出一个全面的框架,推进微生物群落在生物制造应用中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信