{"title":"Disrupting the bacterial language: quorum quenching and its applications.","authors":"Yeting Tu, Hanyu Li, Jiachen Huo, Lichen Gou, Xiang Wen, Xiaomin Yu, Xiaorui Zhang, Jumei Zeng, Yuqing Li","doi":"10.1080/1040841X.2025.2466472","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-15"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2025.2466472","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.
期刊介绍:
Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.